×

Blood flow in stenosed arteries with radially variable viscosity, peripheral plasma layer thickness and magnetic field. (English) Zbl 1293.76186

Summary: A novel approach of combined mathematical and computational models has been developed to investigate the oscillatory two-layered flow of blood through arterial stenosis in the presence of a transverse uniform magnetic field applied. Blood in the core region and plasma fluid in the peripheral layer region are assumed to obey the law of Newtonian fluid. An analytical solution is obtained for velocity profile and volumetric flow rate in the peripheral plasma region and also wall shear stress. Finite difference method is employed to solve the momentum equation for the core region. The numerical solutions for velocity, flow rate and flow resistance are computed. The effects of various parameters associated with the present flow problem such as radially variable viscosity, hematocrit, plasma layer thickness, magnetic field and pulsatile Reynolds number on the physiologically important flow characteristics namely velocity distribution, flow rate, wall shear stress and resistance to flow have been investigated. It is observed that the velocity increases with the increase of plasma layer thickness. An increase or a decrease in the velocity and wall shear stress against the increase in the value of magnetic parameter (Hartmann number) and hematocrit is dependent on the value of \(t\). An increase in magnetic field leads to an increase in the flow resistance and it decreases with the increase in the plasma layer thickness and pulsatile Reynolds number. The information concerning the phase lag between the flow characteristics and how it is affected by the hematocrit, plasma layer thickness and Hartmann number has, for the first time, been added to the literature.

MSC:

76Z05 Physiological flows
76W05 Magnetohydrodynamics and electrohydrodynamics
76M20 Finite difference methods applied to problems in fluid mechanics
92C35 Physiological flow
Full Text: DOI

References:

[1] Young DF (1968) Effects of a time-dependent stenosis on flow through a tube. J Eng Ind, Trans ASME 90:248-254 · doi:10.1115/1.3604621
[2] Caro, CG, Arterial Fluid Mechanics and Atherogenesis, No. 2(Suppl.), 6-11 (1981)
[3] Distenfass L (1971) Viscosity factors in hypertensive and cardiovascular diseases. Cardiovasc Med 2:337-349
[4] Fry DL (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165-197 · doi:10.1161/01.RES.22.2.165
[5] Motta M, Haik Y, Gandhari A, Chen CJ (1998) High magnetic field effects on human deoxygenated hemoglobin light absorption. Bioelectrochem Bioenerg 47:297-300 · doi:10.1016/S0302-4598(98)00165-2
[6] El-Shehawey EF, Elbarbary EME, Afifi NAS, Elshahed M (2000) MHD flow of an elastic-viscous fluid under periodic body acceleration. J Math Math Sci 23:795-799 · Zbl 0989.76097 · doi:10.1155/S0161171200002817
[7] Midya C, Layek GC, Gupta AS, Roy Mahapatra T (2003) Magnetohydrodynamics viscous flow separation in a channel with constrictions. J Fluid Eng, Trans ASME 125:952-962 · doi:10.1115/1.1627834
[8] Ramachandra Rao A, Deshikachar KS (1988) Physiological type flow in a circular pipe in the presence of a transverse magnetic field. J Indian Inst Sci 68:247-260 · Zbl 0676.76105
[9] Haldar K, Ghosh SN (1994) Effect of a magnetic field on blood flow through an indented tube in the presence of erythrocytes. Indian J Pure Appl Math 25:345-352 · Zbl 0797.76100
[10] Voltairas PA, Fotiadis DI, Michalis LK (2002) Hydrodynamics of magnetic drug targeting. J Biomech 35:813-821 · doi:10.1016/S0021-9290(02)00034-9
[11] Vardanian VA (1973) Effect of magnetic field on blood flow. Biofizika 18:491-496
[12] Bhargava R, Rawat S, Takhar HS, Beg OA (2007) Pulsatile magneto-biofluid flow and mass transfer in a non-Darcian porous medium channel. Meccanica 42:247-262 · Zbl 1162.76410 · doi:10.1007/s11012-007-9052-z
[13] Young DF (1979) Fluid mechanics of arterial stenosis. J Biomech Eng, Trans ASME 101:157-175 · doi:10.1115/1.3426241
[14] Forrester JH, Young DF (1970) Flow through a converging and diverging tube and the implications in occlusive vascular disease. J Biomech 3:297-316 · doi:10.1016/0021-9290(70)90031-X
[15] Macdonald DA (1979) On steady flow through modeled vascular stenoses. J Biomech 12:13-20 · doi:10.1016/0021-9290(79)90004-6
[16] Ogulu A, Abbey TM (2005) Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int Commun Heat Mass Transf 32:983-989 · doi:10.1016/j.icheatmasstransfer.2004.08.028
[17] Ogulu A, Bestman AR (1993) Deep heat muscle treatment a mathematical model—I & II. Acta Phys Acad Sci Hung 73:3-16 & 17-27
[18] Womersley JR (1955) Oscillatory motion of a viscous liquid in a walled elastic tube. Philos Mag 46:199-221 · Zbl 0064.43903
[19] Kunz AL, Coulter NA Jr. (1967) Non-Newtonian behavior of blood in oscillating flow. Biophys J 7:25-36 · doi:10.1016/S0006-3495(67)86573-1
[20] Coulter NA, Singh M Jr. (1971) Frequency dependence of blood viscosity in oscillatory flow. Biorheology 8:115-124
[21] Rao AR, Deshikachar KS (1986) MHD oscillatory flow of blood through channels of various cross sections. Int J Eng Sci 24:1615-1628 · Zbl 0625.76129 · doi:10.1016/0020-7225(86)90136-9
[22] Haldar K (1987) Osillatory flow of blood in a stenosed artery. Bull Math Biol 49:279-287 · Zbl 0623.92015
[23] Waters SL, Pedley TJ (1999) Oscillatory flow in a tube of time-dependent curvature. Part 1. Perturbation to flow in a stationary curved tube. J Fluid Mech 383:327-352 · Zbl 0932.76099 · doi:10.1017/S0022112099004085
[24] Moyers-Gonzalez MA, Ovens RG, Fang J (2008) A non- homogeneous constitutive model for human blood. Part III. Oscillatory flow. J Non-Newton Fluid Mech 155:161-173 · Zbl 1274.76386 · doi:10.1016/j.jnnfm.2008.04.001
[25] Kumar S, Kumar S, Kumar D (2009) Research note: oscillatory MHD flow of blood through an artery with mild stenosis. Int J Eng, Trans A: Basics 22:125-130 · Zbl 1357.76101
[26] Greppi M (1978) Numerical solution of a pulsatile flow problem. Meccanica 13:230-237 · Zbl 0418.76099 · doi:10.1007/BF02128389
[27] Beg OA, Bhargava R, Rawat S, Halim K, Takhar HS (2008) Computational modeling of biomagnetic micropolar blood flow and heat transfer in a two-dimensional non-Darcian porous medium. Meccanica 43:391-410 · Zbl 1163.76454 · doi:10.1007/s11012-007-9102-6
[28] Shahmohamadi H (2011) Reliable treatment of a new analytical method for solving MHD boundary-layer equations. Meccanica 46:921-933 · Zbl 1271.76387 · doi:10.1007/s11012-010-9350-8
[29] Shahmohamadi H (2012) Analytic study on non-Newtonian natural convection boundary layer flow with variable wall temperature on a horizontal plate. Meccanica 47:1313-1323 · Zbl 1293.76133 · doi:10.1007/s11012-011-9515-0
[30] Saad EI (2012) Cell models for micropolar flow past a viscous fluid sphere. Meccanica 47:2055-2068 · Zbl 1293.76017 · doi:10.1007/s11012-012-9575-9
[31] Bugliarello G, Sevilla J (1970) Velocity distribution and other characteristics of steady and pulsatile blood flow in fine glass tubes. Biorheology 17:85-107
[32] Bugliarello G, Hayden JW (1963) Detailed characteristics of the flow of blood in vitro. J Rheol 7:209-230 · doi:10.1122/1.548964
[33] Haynes RH (1960) Physical basis of the dependence of blood viscosity on these radius. Am J Physiol 198:1193-1205
[34] Sharan M, Popel AS (2001) A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38:415-428
[35] Shukla JB, Parihar RS, Rao BRP (1980) Effect of peripheral layer viscosity on blood flow through the artery with mild stenosis. Bull Math Biol 42:797-805 · Zbl 0446.92002
[36] Shukla JB, Parihar RS, Rao BRP (1980) Biorheological aspects of blood flow through artery with mild stenosis: effects of peripheral layer. Biorheology 17:403-410
[37] Ikbal MA, Chakravarty S, Mandal PK (2009) Two-layered micropolar fluid flow through stenosed artery, effect of peripheral layer thickness. Comput Math Appl 58:1328-1339 · Zbl 1189.76802 · doi:10.1016/j.camwa.2009.07.023
[38] Ponalagusamy R (2007) Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J Appl Sci 7:1071-1077 · doi:10.3923/jas.2007.1071.1077
[39] Ponalagusamy R, Tamil Selvi R (2011) A study on two-layered model (Casson-Newtonian) for blood flow through an arterial stenosis: axially variable slip velocity at the wall. J Franklin Inst 348:2308-2321 · Zbl 1239.92030 · doi:10.1016/j.jfranklin.2011.06.020
[40] Chaturani P, Kaloni PN (1976) Two-layered Poiseuille flow model for blood flow through arteries of small diameter and arterioles. Biorheology 13:243-250
[41] Chaturani, P.; Ponnalagarsamy, R., A two-layered model for blood flow through stenosed arteries, 16-22 (1982), Hydrabad, India
[42] Srivastava VP (1996) Two-phase model of blood flow through stenosed tubes in the presence of a peripheral layer: applications. J Biomech 29:1377-1382 · doi:10.1016/0021-9290(96)00037-1
[43] Srivastava VP, Srivastava R (2009) Particulate suspension blood flow through a narrow catheterized artery. Comput Math Appl 58:227-238 · Zbl 1189.76810 · doi:10.1016/j.camwa.2009.01.041
[44] Sankar DS, Lee U (2010) Two-fluid Casson model for pulsatile blood flow through stenosed arteries: a theoretical model. Commun Nonlinear Sci Numer Simul 15:2086-2097 · Zbl 1222.76125 · doi:10.1016/j.cnsns.2009.08.021
[45] Imaeda K, Goodman FO (1980) Analysis of non-linear pulsatile blood flow in arteries. J Biomech 13:1007-1022 · doi:10.1016/0021-9290(80)90045-7
[46] Mehrotra R, Jayaraman G, Padmanabhan N (1985) Pulsatile blood flow in a stenosed artery—a theoretical model. Med Biol Eng Comput 23:55-62 · doi:10.1007/BF02444028
[47] Sanyal DC, Maji NK (1999) Unsteady blood flow through an indented tube with atherosclerosis. Indian J Pure Appl Math 30:951-959 · Zbl 0936.92023
[48] El-Khatib FH, Damiano ER (2003) Linear and non-linear analyses of pulsatile blood flow in a cylindrical tube. Biorheology 40:503-522
[49] Venkateshwarlu K, Anand J (2004) Numerical study of unsteady blood flow through an indented tube with atherosclerosis. Indian J Biochem Biophys 41:241-245
[50] Ponalagusamy R (2010) Role of pulsatility on blood flow in an arterial stenosis. Int J Math Eng Comput 1:1-6
[51] Ponnalagarsamy R, Kawahava M (1989) A finite element analysis of laminar unsteady flows of viscoelastic fluids through channels with non-uniform cross-sections. Int J Numer Methods Fluids 9:1487-1501 · Zbl 0682.76004 · doi:10.1002/fld.1650091205
[52] Philip D, Chandra P (1996) Flow of Eringen fluid (simple micro fluid) through an artery with mild stenosis. Int J Eng Sci 34:87-99 · Zbl 0900.76800 · doi:10.1016/0020-7225(95)00077-1
[53] Ponnalagarsamy R (1986) Blood flow through stenosed tube. PhD thesis, IIT, Bombay, India
[54] Haldar K (1985) Effects of the shape of stenosis on the resistance to blood flow through an artery. Bull Math Biol 47:545-550
[55] Ambethkar V, Singh PK (2011) Effect of magnetic field on an oscillatory flow of a viscoelastic fluid with thermal radiation. Appl Math Sci 5:935-946 · Zbl 1408.76569
[56] Cookey IC, Ogulu A, Omubo-Pepple VB (2003) Influence of viscous dissipation and radiation on unsteady MHD free-convection flow past an infinite heated vertical plate in a porous medium with time-dependent suction. Int J Heat Mass Transf 46:2305-2311 · Zbl 1032.76682 · doi:10.1016/S0017-9310(02)00544-6
[57] Fry, DL, Responses of the arterial wall to certain physical factors, No. 12, 93-125 (1973)
[58] Caro CG, Fitzgerald JM, Schroter RC (1971) Atheroma and Arterial wall: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proc R Soc Lond B 177:109-159. · doi:10.1098/rspb.1971.0019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.