×

On stagnation point flow of Sisko fluid over a stretching sheet. (English) Zbl 1293.76014

Summary: The steady two-dimensional stagnation-point flow, represented by Sisko fluid constitutive model, over a stretching sheet is investigated theoretically. Using suitable similarity transformations, the governing boundary-layer equations are transformed into the self-similar non-linear ordinary differential equation. The transformed equation is then solved using a very efficient analytic technique namely the homotopy analysis method (HAM) and the HAM solutions are validated by the exact analytic solutions obtain in certain special cases. The influence of the power-law index \((n)\), the material parameter \((A)\) and the velocity ratio parameter \((d/c)\) on the flow characteristics is studied and presented through several graphs. In addition, the local skin friction coefficient for several values of these parameters is tabulated and examined. The similarity solutions for both the Newtonian and the power-law fluids are presented as special cases of the analysis. The results obtained reveal that, in comparison with the Newtonian and the power-law fluids, the velocity profiles of the Sisko fluid are much faster (slower), for \(d/c<1\) \((d/c>1)\), respectively.

MSC:

76A05 Non-Newtonian fluids
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
Full Text: DOI

References:

[1] Hiemenz K (1911) Die Grenzschicht an einem in den gleichformaingen Flissigkeitsstrom eingetauchten graden Kreiszylinder. Dinglers Polytech J 326:321-324
[2] Howarth L On the calculation of the steady flow in the boundary layer near the surface of a cylinder in a stream. ARCRM, 1632
[3] Schlichting H, Bussmann K (1943) Exakte Lösungen für die laminare Reibungsschicht mit Sbsangung und Ausblasen. Schr dtsch Akad Luftfahrtf, Ser B 7:25-69
[4] Eckert ERG (1942) Die Berechnung des Warmeüderganges in der laminaren Grenzschicht um stromter Korper. VDI-Forchung-beft, Berlin, pp 416-418
[5] Chiam TC (1994) Stagnation point flow towards a stretching plate. J Phys Soc Jpn 63:2443-2444 · doi:10.1143/JPSJ.63.2443
[6] Kapur JN, Srivastava RC (1963) Similar solutions of the boundary layer equations for power law fluids. Z Angew Math Phys 14:383-388 · Zbl 0113.40502 · doi:10.1007/BF01603097
[7] Koneru SR, Manohar R (1963) Stagnation point flows of non-Newtonian power-law fluids. Z Angew Math Phys 14:383-388 · Zbl 0182.27401 · doi:10.1007/BF01603097
[8] Mahapatra TR, Nandy SK, Gupta AS (2009) Magnetohydrodynamic stagnation point flow of a power-law fluid towards a stretching surface. Int J Non-Linear Mech 44:123-128 · Zbl 1422.76203 · doi:10.1016/j.ijnonlinmec.2009.02.001
[9] Mahapatra TR, Nandy SK, Gupta AS (2009) Analytical solution of magnetohydrodynamic stagnation point flow of a power-law fluid towards a stretching surface. Appl Math Comput 215:1696-1710 · Zbl 1422.76203
[10] Layek GC, Mukhopadhyay S, Samad SA (2007) Heat and mass transfer analysis for boundary layer stagnation-point flow towards a heated porous stretching sheet with heat absorption/generation and suction/blowing. Int Commun Heat Mass Transf 34:347-356 · doi:10.1016/j.icheatmasstransfer.2006.11.011
[11] Gorden RAV, Vajravelu K, Pop I (2012) Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet. Meccanica 47:31-50 · Zbl 1293.76179 · doi:10.1007/s11012-010-9402-0
[12] Mahmoud MAA, Waheed SE (2012) MHD stagnation point flow of a micropolar fluid towards a moving surface with radiation. Meccanica 47:1119-1130 · Zbl 1293.76172 · doi:10.1007/s11012-011-9498-x
[13] Makinde OD (2012) Heat and mass transfer by MHD mixed convection stagnation point flow toward a vertical plate embedded in a highly porous medium with radiation and internal heat generation. Meccanica 47:1173-1184 · Zbl 1293.76173 · doi:10.1007/s11012-011-9502-5
[14] Mahapatra TR, Nandy SK (2013) Stability of dual solutions in stagnation-point flow and heat transfer over a porous shrinking sheet with thermal radiation. Meccanica 48:23-32 · Zbl 1293.76073 · doi:10.1007/s11012-012-9579-5
[15] Sisko AW (1958) The flow of lubricating greases. Ind Eng Chem Res 50:1789-1792 · Zbl 0095.24001 · doi:10.1021/ie50588a042
[16] Xu J (2005) Rheology of polymeric suspensions: polymer nanocomposites and waterborne coatings, Industrial and Engineering Chemistry Coating. Ph.D. Thesis, Ohio State University, Athens
[17] Siddiqui AM, Ahmed M, Ghori QK (2007) Thin film flow of non-Newtonian fluids on a moving belt. Chaos Solitons Fractals 33:1006-1016 · Zbl 1129.76009 · doi:10.1016/j.chaos.2006.01.101
[18] Khan M, Abbas Z, Hayat T (2008) Analytic solution for flow of Sisko fluid through a porous medium. Transp Porous Media 71:23-37 · doi:10.1007/s11242-007-9109-4
[19] Wang Y, Hayat T, Ali N, Oberlack M (2008) Magnetohydrodynamic peristaltic motion of a Sisko fluid in a symmetric or asymmetric channel. Physica A 387:347-362 · doi:10.1016/j.physa.2007.10.020
[20] Siddiqui AM, Ansari AR, Ahmad A, Ahmad N (2009) On Taylor’s scraping problem and flow of a Sisko fluid. Math Model Anal 14:515-529 · Zbl 1423.76026 · doi:10.3846/1392-6292.2009.14.515-529
[21] Mamboundou HM, Khan M, Hayat T, Mahomed FM (2009) Reduction and solutions for magnetohydrodynamic flow of a Sisko fluid in a porous medium. J Porous Media 12:695-714 · doi:10.1615/JPorMedia.v12.i7.70
[22] Abelman S, Hayat T, Momoniat E (2009) On the Rayleigh problem for a Sisko fluid in a rotating frame. Appl Math Comput 215:2515-2520 · Zbl 1259.76072
[23] Akyildiz FT, Vajravelu K, Mohapatra RN, Sweet E, Gorder RAV (2009) Implicit differential equation arising in the steady flow of a Sisko fluid. Appl Math Comput 210:189-196 · Zbl 1160.76002
[24] Khan M, Abbas Q, Duru K (2010) Magnetohydrodynamic flow of a Sisko fluid in annular pipe: a numerical study. Int J Numer Methods Fluids 62:1169-1180 · Zbl 1423.76491
[25] Khan M, Munawar S, Abbasbandy S (2010) Steady flow and heat transfer of a Sisko fluid in annular pipe. Int J Heat Mass Transf 53:1290-1297 · Zbl 1183.80034 · doi:10.1016/j.ijheatmasstransfer.2009.12.037
[26] Liao SJ (2004) Beyond perturbation: introduction to the homotopy analysis method. Chapman & Hall/CRC, London · Zbl 1051.76001
[27] Liao SJ (2005) A new branch of solutions of boundary layer flows over an impermeable stretching plate. Int J Heat Mass Transf 48:2529-2539 · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[28] Liao SJ (2010) A short review on the homotopy analysis method in fluid mechanics. J Hydrodyn 22:882-884 · doi:10.1016/S1001-6058(10)60046-7
[29] Hayat T, Khan M, Ayub M (2004) On the explicit analytic solutions of an Oldroyd 6-constant fluid. Int J Eng Sci 42:123-135 · Zbl 1211.76009 · doi:10.1016/S0020-7225(03)00281-7
[30] Hayat T, Khan M, Asghar S (2004) Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid. Acta Mech 168:213-232 · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[31] Khan M, Shahzad A (2012) Falkner-Skan boundary layer flow of a Sisko fluid. Z Naturforsch 67a:469-478
[32] Crane LJ (1970) Flow past a stretching sheet. Z Angew Math Phys 21:645-647 · doi:10.1007/BF01587695
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.