×

Newtonian flow in a triangular duct with slip at the wall. (English) Zbl 1293.76050

Summary: We consider the Newtonian Poiseuille flow in a tube whose cross-section is an equilateral triangle. It is assumed that boundary slip occurs only above a critical value of the wall shear stress, namely the slip yield stress. It turns out that there are three flow regimes defined by two critical values of the pressure gradient. Below the first critical value, the fluid sticks everywhere and the classical no-slip solution is recovered. In an intermediate regime the fluid slips only around the middle of each boundary side and the flow problem is not amenable to analytical solution. Above the second critical pressure gradient non-uniform slip occurs everywhere at the wall. An analytical solution is derived for this case and the results are discussed.

MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Denn MM (2001) Extrusion instabilities and wall slip. Annu Rev Fluid Mech 33:265-287 · Zbl 0988.76038 · doi:10.1146/annurev.fluid.33.1.265
[2] Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381-411 · Zbl 1076.76076 · doi:10.1146/annurev.fluid.36.050802.122124
[3] Neto C, Evans DR, Bonaccurso E, Butt HJ, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859-2897 · doi:10.1088/0034-4885/68/12/R05
[4] Hatzikiriakos SG (2012) Wall slip of molten polymers. Prog Polym Sci 37:624-643 · doi:10.1016/j.progpolymsci.2011.09.004
[5] Navier CLMH (1827) Sur les lois du mouvement des fluides. Mem Acad R Sci Inst Fr 6:389-440
[6] Sochi T (2011) Slip at fluid-solid interface. Polym Rev 51:309-340 · doi:10.1080/15583724.2011.615961
[7] Damianou Y, Georgiou GC, Moulitsas I (2013) Combined effects of compressibility and slip in flows of a Herchel-Bulkley fluid. J Non-Newton Fluid Mech 193:89-102 · doi:10.1016/j.jnnfm.2012.09.004
[8] Spikes H, Granick S (2003) Equation for slip of simple liquids at smooth solid surfaces. Langmuir 19:5065-5071 · doi:10.1021/la034123j
[9] Estellé P, Lanos C (2007) Squeeze flow of Bingham fluids under slip with friction boundary condition. Rheol Acta 46:397-404 · doi:10.1007/s00397-006-0129-8
[10] Ballesta P, Petekidis G, Isa L, Poon WCK, Besseling R (2012) Wall slip and flow of concentrated hard-sphere colloidal suspensions. J Rheol 56:1005-1037 · doi:10.1122/1.4719775
[11] Ebert WE, Sparrow EM (1965) Slip flow in rectangular and annular ducts. J Basic Eng 87:1018-1024 · doi:10.1115/1.3650793
[12] Majdalani J (2008) Exact Navier-Stokes solution for pulsatory viscous channel flow with arbitrary pressure gradient. J Propuls Power 24:1412-1423 · doi:10.2514/1.37815
[13] Wu WH, Wiwatanapataphee B, Hu M (2008) Pressure-driven transient flows of Newtonian fluids through microtubes with slip boundary. Physica A 387:5979-5990 · doi:10.1016/j.physa.2008.06.043
[14] Wiwatanapataphee B, Wu YH, Hu M, Chayantrakom K (2009) A study of transient flows of Newtonian fluids through micro-annuals with a slip boundary. J Phys A, Math Theor 42:065206 · Zbl 1168.76014 · doi:10.1088/1751-8113/42/6/065206
[15] Wang CY (2012) Brief review of exact solutions for slip-flow in ducts and channels. J Fluids Eng 134:094501 · doi:10.1115/1.4007232
[16] Wang CY (2003) Slip flow in a triangular duct—an exact solution. Z Angew Math Mech 33:629-631 · Zbl 1135.76320 · doi:10.1002/zamm.200310057
[17] Kaoullas G, Georgiou GC (2013) Newtonian Poiseuille flows with wall slip and non-zero slip yield stress. J Non-Newton Fluid Mech 197:24-30 · doi:10.1016/j.jnnfm.2013.02.005
[18] Kalimeris K, Fokas AS (2010) The heat equation in the interior of an equilateral triangle. Stud Appl Math 124:283-305 · Zbl 1189.35045 · doi:10.1111/j.1467-9590.2009.00471.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.