×

Rheological model optimization using advanced evolutionary computation for the analysis of the influence of recycled rubber on rubber blend dynamical behaviour. (English) Zbl 1293.74049

Summary: Rheological models of tested rubber blend samples, with different ratios of smut/recycled material, were developed, analyzed and discussed according to experimental data. The experimental measurements show the dynamical behavior of these samples after a short-term axial load. The rheological model of samples was assumed as a viscoelastic Voigt-Maxwell and hyperelastic Mooney-Rivlin model. Real coded genetic algorithms were implemented for optimal model parameters identification in order to minimize the difference between the real sample behavior and dynamical model output. Numerical results obtained for analyzed mixture were compared with the original sample to verify the presented method. In purpose of predicting the dynamical characteristics for desirable rubber blends, an interrelation was formed based on the concentration of recycled material in sample blends and dynamical model parameters dependence.

MSC:

74D05 Linear constitutive equations for materials with memory
74B20 Nonlinear elasticity
74P10 Optimization of other properties in solid mechanics
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Drozdov AD, Dorfmann A (2002) The nonlinear viscoelastic response of carbon black-filled natural rubbers. Int J Solids Struct 39:5699-5717 · Zbl 1015.74518 · doi:10.1016/S0020-7683(02)00455-9
[2] Zhang J, Richards CM (2007) Parameter identification of analytical and experimental rubber isolators represented by Maxwell models. Mech Syst Signal Process 21:2814-2832 · doi:10.1016/j.ymssp.2007.02.007
[3] Brennan MJ, Carrella A, Waters TP, Lopes V (2008) On the dynamic behaviour of a mass supported by a parallel combination of a spring and an elastically connected damper. J Sound Vib 309:823-837 · doi:10.1016/j.jsv.2007.07.074
[4] Rajagopal KR (2009) A note on a reappraisal and generalization of the Kelvin-Voigt model. Mech Res Commun 36:232-235 · Zbl 1258.74034 · doi:10.1016/j.mechrescom.2008.09.005
[5] Zhang J, Richards CM (2006) Dynamic analysis and parameter identification of a single mass elastomeric isolation system using a Maxwell-Voigt model. J Vib Acoust 128:713-721 · doi:10.1115/1.2345676
[6] Piero V (2011) Sixty years of solid mechanics. Meccanica 46:1171-1189 · Zbl 1271.74003 · doi:10.1007/s11012-011-9497-y
[7] Amin AFMS, Alam MS, Okui Y (2002) An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: experiments, parameter identification and numerical verification. Mech Mater 34:75-95 · doi:10.1016/S0167-6636(01)00102-8
[8] Liu I-S (2012) A note on the Mooney-Rivlin material model. Contin Mech Thermodyn 24:583-590 · Zbl 1318.74006 · doi:10.1007/s00161-011-0197-6
[9] Müllner HW, Jäger A, Elisabeth GA, Eberhardsteiner J (2007) Experimental identification of viscoelastic properties of rubber compounds by means of torsional rheometry. Meccanica 43:327-337 · Zbl 1163.74303 · doi:10.1007/s11012-007-9097-z
[10] Milasinovic DD (2007) Rheological-dynamical analogy: prediction of damping parameters of hysteresis damper. Int J Solids Struct 44:7143-7166 · Zbl 1166.74382 · doi:10.1016/j.ijsolstr.2007.04.001
[11] Milasinovic DD (2004) Rheological-dynamical analogy: visco-elasto-plastic behavior of metallic bars. Int J Solids Struct 41:4599-4634 · Zbl 1133.74317 · doi:10.1016/j.ijsolstr.2004.02.061
[12] Zhupanska OI, Abdel-Hadi AI, Cristescu ND (2002) Mechanical properties of microcrystalline cellulose part II. Constitutive model. Mech Mater 34:391-399 · doi:10.1016/S0167-6636(02)00158-8
[13] Yongxin Y, Hao L (2012) An iterative updating method for undamped structural systems. Meccanica 47:699-706 · Zbl 1293.74419 · doi:10.1007/s11012-011-9483-4
[14] Claude C, Moutou Pitti R (2010) Modelling of ageing viscoelastic materials in three dimensional finite element approach. Meccanica 45:439-441 · Zbl 1258.74201 · doi:10.1007/s11012-009-9244-9
[15] del Coz Díaz JJ, García Nieto PJ, Castro-Fresno D, Rodríguez-Hernández J (2010) Nonlinear explicit analysis and study of the behaviour of a new ring-type brake energy dissipator by FEM and experimental comparison. Appl Math Comput 216:1571-1582 · Zbl 1277.74074 · doi:10.1016/j.amc.2010.03.009
[16] Castro-Fresno D, del Coz Diaz JJ, López LA, García Nieto PJ (2008) Evaluation of the resistant capacity of cable nets using the finite element method and experimental validation. Eng Geol 100:1-10 · doi:10.1016/j.enggeo.2008.02.007
[17] Castro-Fresno D, del Coz Díaz JJ, Garcia Nieto PJ, Norambuena CJ (2009) Comparative analysis of mechanical tensile tests and the explicit simulation of a brake energy dissipater by FEM. Int J Nonlinear Sci Numer 10:1059-1085 · doi:10.1515/IJNSNS.2009.10.8.1059
[18] Herrera F, Lozano M, Verdegay JL (1998) Tackling real-coded genetic algorithms: operators and tools for behavioral analysis. Artif Intell Rev 12:265-319 · Zbl 0905.68116 · doi:10.1023/A:1006504901164
[19] Chang, WD, A real-coded genetic algorithm for process control and identification, China
[20] Tutkun N (2009) Parameter estimation in mathematical models using the real coded genetic algorithms. Expert Syst Appl 36:3342-3345 · doi:10.1016/j.eswa.2008.01.060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.