×

Failure mode transitions in RC beams: A cohesive/overlapping crack model application. (English) Zbl 1293.74401

From the summary: The analysis of reinforced concrete beams in flexure taking into account the nonlinear behaviour of concrete is addressed by a numerical approach based on the Cohesive-Overlapping Crack Model. An extensive experimental research was performed in order to obtain a rational explanation for failure transitional phenomena of RC beams by varying steel percentage and/or beam slenderness and/or beam size-scale. In the present paper, collapse mechanisms due to concrete tensile cracking, concrete compressive crushing and steel yielding and/or slippage are analysed and a numerical vs. experimental comparison is presented in order to validate the proposed model.

MSC:

74R99 Fracture and damage
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74E30 Composite and mixture properties
74-05 Experimental work for problems pertaining to mechanics of deformable solids
Full Text: DOI

References:

[1] Baluch, M.; Azad, A.; Ashmawi, W.; Carpinteri, A. (ed.), Fracture mechanics application to reinforced concrete members in flexure, 413-436 (1992), London
[2] Bažant ZP (1989) Identification of strain-softening constitutive relation from uniaxial tests by series coupling model for localization. Cem Concr Res 19:973-977 · doi:10.1016/0008-8846(89)90111-7
[3] Bazant ZP, Beisel S (1994) Smeared-tip superposition method for cohesive fracture with rate effect and creep. Int J Fract 65:277-290
[4] Bosco C, Carpinteri A (1992) Softening and snap-through behavior of reinforced elements. J Eng Mech 118:1564-1577 · doi:10.1061/(ASCE)0733-9399(1992)118:8(1564)
[5] Bosco, C.; Carpinteri, A.; Carpinteri, A. (ed.), Fracture mechanics evaluation of minimum reinforcement in concrete structures, 347-377 (1992), London
[6] Bosco C, Carpinteri A (1993) Scale effects and transitional phenomena of reinforced concrete beams in flexure. ESIS Technical Committée 9 Round Robin proposal, Department of Structural Engineering of Politecnico di Torino, Italy · Zbl 0973.74505
[7] Bosco C, Carpinteri A (1995) Discontinuous constitutive response of brittle matrix fibrous composites. J Mech Phys Solids 43:261-274 · Zbl 0880.73035 · doi:10.1016/0022-5096(94)00058-D
[8] Bosco C, Carpinteri A, Debernardi PG (1990) Minimum reinforcement in high-strength concrete. J Struct Eng 116:427-437 · doi:10.1061/(ASCE)0733-9445(1990)116:2(427)
[9] Bosco C, Carpinteri A, Ferro G, El-Khatieb M (1996) Scale effects and transitional failure phenomena of reinforced concrete beams in flexure. Report to ESIS Technical Committée 9, Dipartimento di Ingegneria Strutturale, Politecnico di Torino · Zbl 0973.74505
[10] Brincker, R.; Henriksen, MS; Christensen, FA; Heshe, G.; Carpinteri, A. (ed.), Size effects on the bending behaviour of reinforced concrete beams, 127-180 (1999), Oxford · Zbl 0940.74027 · doi:10.1016/S1566-1369(99)80064-8
[11] Carpinteri, A.; Sih, GC (ed.); Mirabile, M. (ed.), Size effect in fracture toughness testing: a dimensional analysis approach, 785-797 (1980), Alphen an den Rijn
[12] Carpinteri, A., A fracture mechanics model for reinforced concrete collapse, 17-30 (1981), Delft
[13] Carpinteri A (1981) Static and energetic fracture parameters for rocks and concretes. Mater Struct 14:151-162
[14] Carpinteri A (1982) Notch sensitivity in fracture testing of aggregative materials. Eng Fract Mech 16:467-481 · doi:10.1016/0013-7944(82)90127-8
[15] Carpinteri A (1984) Stability of fracturing process in RC beams. J Struct Eng 110:544-558 · doi:10.1061/(ASCE)0733-9445(1984)110:3(544)
[16] Carpinteri, A.; Shah, SP (ed.), Interpretation of the Griffith instability as a bifurcation of the global equilibrium, 287-316 (1985), Dordrecht · doi:10.1007/978-94-009-5121-1_10
[17] Carpinteri A, Massabò R (1996) Bridged versus cohesive crack in the flexural behaviour of brittle-matrix composites. Int J Fract 81:125-145 · doi:10.1007/BF00033178
[18] Carpinteri, A.; Colombo, G.; Ferrara, G.; Giuseppetti, G.; Shah, SP (ed.); Swartz, SE (ed.), Numerical simulation of concrete fracture through a bilinear softening stress-crack opening displacement law, 131-141 (1989), New York · doi:10.1007/978-1-4612-3578-1_14
[19] Carpinteri A, Ferro G, Ventura G (2003) Size effects on flexural response of reinforced concrete elements with nonlinear matrix. Eng Fract Mech 70:995-1013 · doi:10.1016/S0013-7944(02)00162-5
[20] Carpinteri A, Ruiz Carmona J, Ventura G (2007) Propagation of flexural and shear cracks through reinforced concrete beams by the bridged crack model. Mag Concr Res 59:743-756 · doi:10.1680/macr.2007.59.10.743
[21] Carpinteri, A.; Corrado, M.; Paggi, M.; Mancini, G.; Carpinteri, A. (ed.); Gambarova, P. (ed.); Ferro, G. (ed.); Plizzari, G. (ed.), Cohesive versus overlapping crack model for a size effect analysis of RC elements in bending, 655-663 (2007), Leiden
[22] Carpinteri A, Corrado M, Paggi M, Mancini G (2009) New model for the analysis of size-scale effects on the ductility of reinforced concrete elements in bending. J Eng Mech 135:221-229 · doi:10.1061/(ASCE)0733-9399(2009)135:3(221)
[23] Comité Euro-International du Béton C (1993) CEB-FIP Model Code 1990, Bulletin No. 213/214. Telford, Lausanne
[24] Corrado M, Cadamuro E, Carpinteri A (2011) Dimensional analysis approach to study snap back-to-softening-to-ductile transitions in lightly reinforced quasi-brittle materials. Int J Fract 172:53-63 · Zbl 1306.74057 · doi:10.1007/s10704-011-9646-2
[25] El-Khatieb M (1997) Transizione di scala duttile-fragile per le travi in calcestruzzo armato. PhD Thesis, Dipartimento di Ingegneria Strutturale, Politecnico di Torino
[26] Eurocode 2 (2004) Design of concrete structures, Part 1-1: General rules and rules for buildings. p 230
[27] Gustafsson PJ (1985) Fracture mechanics studies of non-yielding materials like concrete. Report TVBM-1007, Div Bldg Mater Lund Inst Tech, Sweden
[28] Gustafsson PJ, Hillerborg A (1988) Sensitivity in shear strength of longitudinally reinforced concrete beams to fracture energy of concrete. ACI Struct J 85:286-294
[29] Hawkins NM, Hjorsetet K (1992) Minimum reinforcement requirement for concrete flexural members. Elsevier, London, pp 379-412
[30] Hillerborg A (1990) Fracture mechanics concepts applied to moment capacity and rotational capacity of reinforced concrete beams. Eng Fract Mech 35:233-240 · doi:10.1016/0013-7944(90)90201-Q
[31] Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773-782 · doi:10.1016/0008-8846(76)90007-7
[32] Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J Appl Mech 24:361-364
[33] Jansen DC, Shah SP (1997) Effect of length on compressive strain softening of concrete. J Eng Mech 123:25-35 · doi:10.1061/(ASCE)0733-9399(1997)123:1(25)
[34] Jenq, YS; Shah, SP; Li, VC (ed.); Bazant, ZP (ed.), Shear resistance of reinforced concrete beams—a fracture mechanics approach, 327-358 (1989), Detroit
[35] Markeset G, Hillerborg A (1995) Softening of concrete in compression localization and size effects. Cem Concr Res 25:702-708 · doi:10.1016/0008-8846(95)00059-L
[36] Palmquist SM, Jansen DC (2001) Postpeak strain-stress relationship for concrete in compression. ACI Mater J 98:213-219
[37] Planas J, Elices M (1992) Asymptotic analysis of a cohesive crack: 1. Theoretical background. Int J Fract 55:153-177 · doi:10.1007/BF00017275
[38] RILEM TCS (1985) Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams. Draft Recommendation. Materials and Structures, vol 18
[39] Ruiz G (2001) Propagation of a cohesive crack crossing a reinforcement layer. Int J Fract 111:265-282 · doi:10.1023/A:1012260410704
[40] Ruiz, G.; Elices, M.; Planas, J.; Carpinteri, A. (ed.), Size effects and bond-slip dependence of lightly reinforced concrete beams, 127-180 (1999), Oxford · Zbl 1113.74364
[41] So KO, Karihaloo BL (1993) Shear capacity of longitudinally reinforced beams—a fracture mechanics approach. J ACI 90:591-600
[42] Suzuki, M.; Akiyama, M.; Matsuzaki, H.; Dang, TH, Concentric loading test of RC columns with normal- and high-strength materials and averaged stress-strain model for confined concrete considering compressive fracture energy, Naples, Italy
[43] UNI 6556 Determinazione del modulo elastico secante a compressione
[44] van Vliet M, van Mier J (1996) Experimental investigation of concrete fracture under uniaxial compression. Mech Cohes-Frict Mater 1(1):115-127 · doi:10.1002/(SICI)1099-1484(199601)1:1<115::AID-CFM6>3.0.CO;2-U
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.