×

On tempered and square integrable representations of classical \(p\)-adic groups. (English) Zbl 1295.22025

In this paper the author studies two problems. In previous works of Mœglin and C. Mœglin and the author [J. Am. Math. Soc. 15, No. 3, 715–786 (2002; Zbl 0992.22015)], the discrete series of classical groups over \(p\)-adic fields were classified in terms of admissible triples consisting of partial cuspidal support (of that discrete series representation), a set called the Jordan block of that representation, and of a partially defined function (defined, roughly, on the Jordan block). The author gives a parametrization of tempered representations of classical groups extending the notion of admissible triples to the notion of tempered triples (again, one has a partial cuspidal support, now a multiset called the Jordan block) and again the partially defined function on the Jordan block. The author has two reductions in this problem. First, he studies the problem of parameterizing two tempered representations induced from the discrete series representation of a maximal Levi subgroup. He describes the two representations, denoted by “plus” and “minus” describing certain subquotients of the appropriate Jacquet module existing only in one of these representations; the ”plus” tempered representation. Some Bernstein center considerations then turn this description into the existence of some embeddings of this tempered representation. The second reduction concerns the tempered representations induced from the discrete series of a non-maximal Levi subgroup, but in the case which, for symplectic and odd-orthogonal groups, coincides with the elliptic tempered representations. Now, the general tempered representations of classical groups are irreducibly induced from these (in the case of symplectic and odd-orthogonal groups elliptic) tempered representations.
The second problem which the author studies in this paper to give a Jacquet module interpretation of the partially defined function (one of the invariants of the discrete series representations described above) on the Jordan block of a discrete series. He then explicitly elaborates this situation in the case when a discrete series is obtained from another discrete series (of a smaller classical group of the same type) by the so-called deformation of the Jordan block. In the appendix, the author settles one reducibility result for the parabolic induction of the generalized principal series (induction from the essentially square-integrable representation of a maximal Levi subgroup). This result extends the author’s previous result in the similar situation when the induction was from a maximal Levi subgroup where on the part belonging to the smaller classical group one has a cuspidal representation.

MSC:

22E50 Representations of Lie and linear algebraic groups over local fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
11F70 Representation-theoretic methods; automorphic representations over local and global fields

Citations:

Zbl 0992.22015

References:

[1] Arthur J. The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups. Preprint, http://www.claymath.org/cw/arthur/pdf/Book.pdf · Zbl 1310.22014
[2] Ban D. Parabolic induction and Jacquet modules of representations of O(2n, F). Glas Mat, 1999, 34: 147-185 · Zbl 0954.22013
[3] Ban D, Jantzen C. Degenerate principal series for even-orthogonal groups. Represent Theory, 2003, 7: 440-80 · Zbl 1054.22015 · doi:10.1090/S1088-4165-03-00166-3
[4] Bernstein J. Draft of: Representations of p-adic groups. Preprint · Zbl 1162.22016
[5] Bernstein J, rédigé par Deligne P. Le “centre” de Bernstein. Paris: Hermann, 1984
[6] Bernstein J, Zelevinsky A V. Induced representations of reductive p-adic groups I. Ann Sci École Norm Sup, 1977, 10: 441-472 · Zbl 0412.22015
[7] Casselman W. Introduction to the theory of admissible representations of p-adic reductive groups. Preprint, http://www.math.ubc.ca/?cass/research/pdf/p-adic-book.pdf · Zbl 0874.22014
[8] Goldberg D. Reducibility of induced representations for Sp(2n) and SO(n). Amer J Math, 1994, 116: 1101-1151 · Zbl 0851.22021 · doi:10.2307/2374942
[9] Hanzer M. The generalized injectivity conjecture for the classical p-adic groups. Int Math Res Not, 2010, 2010: 195-237 · Zbl 1205.22015
[10] Herb R. Elliptic representations for Sp(2n) and SO(n). Pacific J Math, 1993, 161: 347-358 · Zbl 0797.22007 · doi:10.2140/pjm.1993.161.347
[11] Jantzen C. Degenerate principal series for symplectic and odd-orthogonal groups. Mem Amer Math Soc, 1996, 590: 1-100 · Zbl 0866.22016
[12] Jantzen C. Tempered representations for classical p-adic groups. Preprint · Zbl 1311.22025
[13] Moeglin C. Sur la classification des séries discrètes des groupes classiques p-adiques: paramètres de Langlands et exhaustivité. J Eur Math Soc, 2002, 4: 143-200 · Zbl 1002.22009 · doi:10.1007/s100970100033
[14] Moeglin C. Points de réductibilité pour les induites de cuspidales. J Algebra, 2003, 268: 81-117 · Zbl 1028.22016 · doi:10.1016/S0021-8693(03)00172-8
[15] Moeglin C. Classification et Changement de base pour les séries discrètes des groupes unitaires p-adiques. Pacific J Math, 2007, 233: 159-204 · Zbl 1157.22010 · doi:10.2140/pjm.2007.233.159
[16] Moeglin, C., Multiplicité 1 dans les paquets d’Arthur aux places p-adiques, 333-374 (2011), Providence, RI · Zbl 1225.22015
[17] Moeglin C, Tadić M. Construction of discrete series for classical p-adic groups. J Amer Math Soc, 2002, 15: 715-786 · Zbl 0992.22015 · doi:10.1090/S0894-0347-02-00389-2
[18] Moeglin, C.; Vignéras, M. F.; Waldspurger, J. L., Correspondances de Howe sur un corps p-adique (1987), Berlin · Zbl 0642.22002
[19] Moeglin C, Waldspurger J L. Sur le transfert des traces tordues d’un group linéaire à un groupe classique p-adique. Selecta Math, 2006, 12: 433-516 · Zbl 1136.22008
[20] Muić G. On generic irreducible representations of Sp(n, F) and SO(2n+ 1, F). Glas Mat, 1998, 33: 19-31 · Zbl 0905.22009
[21] Muić G. A proof of Casselman-Shahidi’s conjecture for quasi-split classical groups. Canad Math Bull, 2001, 44: 298-312 · Zbl 0984.22007 · doi:10.4153/CMB-2001-030-4
[22] Muić G. Composition series of generalized principal series; the case of strongly positive discrete series. Israel J Math, 2004, 149: 157-202 · Zbl 1055.22015
[23] Muić G. Reducibility of Generalized Principal Series. Canad J Math, 2005, 57: 616-647 · Zbl 1068.22017 · doi:10.4153/CJM-2005-025-4
[24] Rodier F. Whittaker models for admissible representations. Proc Sympos Pure Math, 1983, 26: 425-430 · doi:10.1090/pspum/026/0354942
[25] Shahidi F. A proof of Langlands conjecture on Plancherel measures; complementary series for p-adic groups. Ann Math, 1990, 132: 273-330 · Zbl 0780.22005 · doi:10.2307/1971524
[26] Shahidi F. Twisted endoscopy and reducibility of induced representations for p-adic groups. Duke Math J, 1992, 66: 1-41 · Zbl 0785.22022 · doi:10.1215/S0012-7094-92-06601-4
[27] Silberger A. Special representations of reductive p-adic groups are not integrable. Ann Math, 1980, 111: 571-587 · Zbl 0437.22015 · doi:10.2307/1971110
[28] Tadić M. Geometry of dual spaces of reductive groups (non-archimedean case). J Anal Math, 1988, 51: 139-181 · Zbl 0664.22010 · doi:10.1007/BF02791122
[29] Tadić M. Structure arising from induction and Jacquet modules of representations of classical p-adic groups. J Algebra, 1995, 177: 1-33 · Zbl 0874.22014
[30] Tadić M. On reducibility of parabolic induction. Israel J Math, 1998, 107: 29-91 · Zbl 0914.22019 · doi:10.1007/BF02764004
[31] Tadić M. Square integrable representations of classical p-adic groups corresponding to segments. Represent Theory, 1999, 3: 58-89 · Zbl 0918.22012 · doi:10.1090/S1088-4165-99-00071-0
[32] Tadić M. On reducibility and unitarizability for classical p-adic groups, some general results. Canad J Math, 2009, 61: 427-450 · Zbl 1162.22016 · doi:10.4153/CJM-2009-022-7
[33] Tadić M. On invariants of discrete series representations of classical p-adic groups, Manuscripta Math, 2011, 136: 417-435 · Zbl 1222.22016
[34] Tadić, M., On interactions between harmonic analysis and the theory of automorphic forms, 591-650 (2013), New Delhi · Zbl 1297.22022
[35] Waldspurger J L. La formule de Plancherel pour les groupes p-adiques. J Inst Math Jussieu, 2003, 2: 235-333 · Zbl 1029.22016 · doi:10.1017/S1474748003000082
[36] Zelevinsky A V. Induced representations of reductive p-adic groups II: On irreducible representations of GL(n). Ann Sci École Norm Sup, 1980, 13: 165-210 · Zbl 0441.22014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.