×

A moving average Cholesky factor model in joint mean-covariance modeling for longitudinal data. (English) Zbl 06272107

Summary: Modeling the mean and covariance simultaneously is a common strategy to efficiently estimate the mean parameters when applying generalized estimating equation techniques to longitudinal data. In this article, using generalized estimation equation techniques, we propose a new kind of regression models for parameterizing covariance structures. Using a novel Cholesky factor, the entries in this decomposition have moving average and log innovation interpretation and are modeled as linear functions of covariates. The resulting estimators for the regression coefficients in both the mean and the covariance are shown to be consistent and asymptotically normally distributed. Simulation studies and a real data analysis show that the proposed approach yields highly efficient estimators for the parameters in the mean, and provides parsimonious estimation for the covariance structure.

MSC:

62J12 Generalized linear models (logistic models)
62F10 Point estimation
Full Text: DOI

References:

[1] Diggle P J, Heagerty P J, Liang K Y, et al. Analysis of Longitudinal Data. Oxford: Oxford University Press, 2002
[2] Diggle P J, Verbyla A P. Nonparametric estimation of covariance structure in longitudinal data. Biometrics, 1998, 54: 403-415 · Zbl 1058.62600 · doi:10.2307/3109751
[3] Fan J, Huang T, Li R. Analysis of longitudinal data with semiparametric estimation of covariance function. J Amer Statist Assoc, 2007, 102: 632-641 · Zbl 1172.62323 · doi:10.1198/016214507000000095
[4] Fan J, Wu Y. Semiparametric estimation of covariance matrices for longitudinal data. J Amer Statist Assoc, 2008, 103: 1520-1533 · Zbl 1286.62030 · doi:10.1198/016214508000000742
[5] Leng C, Zhang W, Pan J. Semiparametric mean-covariance regression analysis for longitudinal data. J Amer Statist Assoc, 2010, 105: 181-193 · Zbl 1397.62130 · doi:10.1198/jasa.2009.tm08485
[6] Liang K Y, Zeger S L. Longitudinal data analysis using generalized linear models. Biometrika, 1986, 73: 13-22 · Zbl 0595.62110 · doi:10.1093/biomet/73.1.13
[7] Pan J, Mackenzie G. Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 2003, 90: 239-244 · Zbl 1039.62068 · doi:10.1093/biomet/90.1.239
[8] Pourahmadi M. Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation. Biometrika, 1999, 86: 677-690 · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677
[9] Pourahmadi M. Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. Biometrika, 2000, 87: 425-435 · Zbl 0954.62091 · doi:10.1093/biomet/87.2.425
[10] Rothman A J, Levina E, Zhu J. A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika, 2010, 97: 539-550 · Zbl 1195.62089 · doi:10.1093/biomet/asq022
[11] Wang L, Zhou J, Qu A. Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics, 2012, 68: 353-360 · Zbl 1251.62051 · doi:10.1111/j.1541-0420.2011.01678.x
[12] Wang Y G, Carey V. Working correlation structure misspecification, estimation and covariate design: Implications for generalised estimating equations performance. Biometrika, 2003, 90: 29-41 · Zbl 1035.62074 · doi:10.1093/biomet/90.1.29
[13] Ye H, Pan J. Modeling of covariance structures in generalized estimating equations for longitudinal data. Biometrika, 2006, 93: 927-941 · Zbl 1436.62348 · doi:10.1093/biomet/93.4.927
[14] Zhang W, Leng C. A moving average Cholesky factor model in covariance modeling for longitudinal data. Biometrika, 2012, 99: 141-150 · Zbl 1234.62111 · doi:10.1093/biomet/asr068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.