×

Global existence for slightly compressible hydrodynamic flow of liquid crystals in two dimensions. (English) Zbl 1452.76018

Summary: In two dimensions, we study the compressible hydrodynamic flow of liquid crystals with periodic boundary conditions. As shown in our recent work [J. Funct. Anal. 264, No. 7, 1711–1756 (2013; Zbl 1262.76011)], when the parameter \(\lambda\rightarrow\infty\), the solutions to the compressible liquid crystal system approximate that of the incompressible one. Furthermore, we [loc. cit.] proved that the regular incompressible limit solution is global in time with small enough initial data. In this paper, we show that the solution to the compressible liquid crystal flow also exists for all time, provided that \(\lambda\) is sufficiently large and the initial data are almost incompressible.

MSC:

76A15 Liquid crystals
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics

Citations:

Zbl 1262.76011
Full Text: DOI

References:

[1] Climent-Ezquerra B, Guillén-González F, Rojas-Medar M. Reproductivity for a nematic liquid crystal model. Z Angew Math Phys, 2006, 57: 984-998 · Zbl 1106.35058 · doi:10.1007/s00033-005-0038-1
[2] Caffarelli L, Kohn R, Nirenberg L. Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm Pure Appl Math, 1982, 35: 771-831 · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[3] Casella E, Secchi P, Trebeschi P. Global existence of 2D slightly compressible viscous magneto-fluid motion. Port Math N S, 2002, 59: 67-89 · Zbl 1001.76117
[4] Choe H J, Jin B J. Global existence of solutions to slightly compressible Navier-Stokes equations in two dimension. Preprint · Zbl 1032.76035
[5] De Gennes P G. The Physics of Liquid Crystals. New York: Oxford University Press, 1974 · Zbl 0295.76005
[6] Ding S J, Huang J R, Wen H Y, et al. Incompressible limit of the compressible hydrodynamic flow. J Funct Anal, 2013, 264: 1711-1756 · Zbl 1262.76011 · doi:10.1016/j.jfa.2013.01.011
[7] Ding S J, Lin J Y, Wang C Y, et al. Compressible hydrodynamic flow of liquid crystals in 1D. Discret Contin Dyn Syst, 2012, 32: 539-563 · Zbl 1235.35156 · doi:10.3934/dcds.2012.32.539
[8] Ding S J, Wang C Y, Wen H Y. Weak solution to compressible hydrodynamic flow of liquid crystals in dimension one. Discret Contin Dyn Syst, 2011, 15: 357-371 · Zbl 1217.35099
[9] Ericksen J. Hydrostatic theory of liquid crystal. Arch Ration Mech Anal, 1962, 9: 371-378 · Zbl 0105.23403
[10] Feireisl E, Rocca E, Schimperna G. On a non-isothermal model for nematic liquid crystals. Nonlinearity, 2011, 24: 243-257 · Zbl 1372.76011 · doi:10.1088/0951-7715/24/1/012
[11] Hagstrom T, Lorenz J. All-time existence of smooth solutions to PDEs of mixed type and the invariant subspace of uniform states. Adv Appl Math, 1995, 16: 219-257 · Zbl 0855.35029 · doi:10.1006/aama.1995.1011
[12] Hagstrom T, Lorenz J. All-time existence of classical solutions for slightly compressible flows. SIAM J Math Anal, 1998, 29: 652-672 · Zbl 0907.76073 · doi:10.1137/S0036141097315312
[13] Hu X P, Wu H. Global solution to the three-dimensional compressible flow of liquid crystals. ArXiv:1206.2850v1, 2012
[14] Huang T, Wang C Y, Wen H Y. Strong solutions of the compressible nematic liquid crystal flow. J Differential Equations, 2012, 252: 2222-2265 · Zbl 1233.35168 · doi:10.1016/j.jde.2011.07.036
[15] Huang T, Wang C Y, Wen H Y. Blow up criterion for compressible nematic liquid crystal flows in dimension three. Arch Ration Mech Anal, 2012, 204: 285-311 · Zbl 1314.76010 · doi:10.1007/s00205-011-0476-1
[16] Jiang F, Tan Z. Global weak solution to the flow of liquid crystals system. Math Methods Appl Sci, 2009, 30: 2243-2266 · Zbl 1185.35167 · doi:10.1002/mma.1132
[17] Klainerman S, Majda A. Singular limits of quasilinear hyperbolic system with large paramiters and the incompressible limit of compressible fluids. Comm Pure Appl Math, 1981, 34: 481-524 · Zbl 0476.76068 · doi:10.1002/cpa.3160340405
[18] Kreiss H O, Lorenz H. Initial-Boundary Value Problems and The Navier-Stokes Equations. New York: Academic Press, 1989 · Zbl 0689.35001
[19] Lei Z, Zhou Y. Global existence of classical solution for the two-dimensional Oldroyd model via the incompressible limit. SIAM J Math Anal, 2005, 37: 797-814 · Zbl 1130.76308 · doi:10.1137/040618813
[20] Leslie F. Some constitutive equations for liquid crystals. Arch Ration Mech Anal, 1968, 28: 265-283 · Zbl 0159.57101 · doi:10.1007/BF00251810
[21] Li J, Xu Z H, Zhang J W. Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows. ArXiv:1204.4966v1, 2012
[22] Li X L, Wang D H. Global strong solution to the density-dependent incompressible flow of liquid crystals. Trans Amer Math Soc, in press · Zbl 1311.35224
[23] Lin F H. Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow phenomena. Comm Pure Appl Math, 1989, 42: 789-814 · Zbl 0703.35173 · doi:10.1002/cpa.3160420605
[24] Lin F H, Liu C. Nonparabolic dissipative systems modeling the flow of liquid crystals. Comm Pure Appl Math, 1995, 48: 501-537 · Zbl 0842.35084 · doi:10.1002/cpa.3160480503
[25] Lin F H, Liu C. Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret Contin Dyn Syst, 1996, 2: 1-22 · Zbl 0948.35098
[26] Lin F H, Liu C. Existence of solutions for the Ericksen-Leslie system. Arch Ration Mech Anal, 2000, 154: 135-156 · Zbl 0963.35158 · doi:10.1007/s002050000102
[27] Lin F H, Lin J Y, Wang C Y. Liquid crystal flows in two dimensions. Arch Ration Mech Anal, 2010, 197: 297-336 · Zbl 1346.76011 · doi:10.1007/s00205-009-0278-x
[28] Liu C, Walkington N J. Mixed methods for the approximation of liquid crystal flows. Math Model Numer Anal, 2002, 36: 205-222 · Zbl 1032.76035 · doi:10.1051/m2an:2002010
[29] Liu X G, Liu L M, Hao Y H. Existence of strong solutions for the compressible Ericksen-Leslie model. ArXiv:1106. 6140v1, 2011
[30] Liu X G, Liu L M, Hao Y H. A blow-up criterion of strong solutions to the compressible liquid crystals system. Chin Ann Math Ser A, 2011, 32: 393-406 · Zbl 1249.82030
[31] Liu X G, Hao Y H. Incompressible limit of a compressible liquid crystals system. ArXiv:1201.5942, 2012
[32] Liu X G, Zhang Z Y. Existence of the flow of liquid crystals system. Chin Ann Math Ser A, 2009, 30: 1-20 · Zbl 1213.11111 · doi:10.1007/s11425-008-0088-x
[33] Wang D H, Yu C. Incompressible limit for the compressible flow of liquid crystals. ArXiv:1108.4941v1, 2011
[34] Wang D H, Yu C. Global weak solution and large-time behavior for the compressible flow of liquid crystals. Arch Ration Mech Anal, 2012, 204: 881-915. · Zbl 1285.76005 · doi:10.1007/s00205-011-0488-x
[35] Wen H Y, Ding S J. Solutions of incompressible hydrodynamic flow of liquid crystals. Nonlinear Anal: Real World Appl, 2011, 12: 1510-1531 · Zbl 1402.76021 · doi:10.1016/j.nonrwa.2010.10.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.