×

Effect of disjoining pressure in a thin film equation with non-uniform forcing. (English) Zbl 1291.74134

Summary: We explore the effect of disjoining pressure on a thin film equation in the presence of a non-uniform body force, motivated by a model describing the reverse draining of a magnetic film. To this end, we use a combination of numerical investigations and analytical considerations. The disjoining pressure has a regularizing influence on the evolution of the system and appears to select a single steady-state solution for fixed height boundary conditions; this is in contrast with the existence of a continuum of locally attracting solutions that exist in the absence of disjoining pressure for the same boundary conditions. We numerically implement matched asymptotic expansions to construct equilibrium solutions and also investigate how they behave as the disjoining pressure is sent to zero. Finally, we consider the effect of the competition between forcing and disjoining pressure on the coarsening dynamics of the thin film for fixed contact angle boundary conditions.

MSC:

74K35 Thin films
Full Text: DOI

References:

[1] DOI: 10.1016/j.na.2008.12.014 · Zbl 1198.35134 · doi:10.1016/j.na.2008.12.014
[2] DOI: 10.1063/1.1355022 · Zbl 1184.76408 · doi:10.1063/1.1355022
[3] DOI: 10.1063/1.870138 · Zbl 1149.76588 · doi:10.1063/1.870138
[4] DOI: 10.1103/RevModPhys.81.1131 · doi:10.1103/RevModPhys.81.1131
[5] DOI: 10.1017/S0022112088002484 · Zbl 0653.76035 · doi:10.1017/S0022112088002484
[6] DOI: 10.1017/S0022112006009712 · Zbl 1147.76574 · doi:10.1017/S0022112006009712
[7] DOI: 10.1090/S0025-5718-1965-0198670-6 · doi:10.1090/S0025-5718-1965-0198670-6
[8] DOI: 10.1137/080721674 · Zbl 1213.76031 · doi:10.1137/080721674
[9] DOI: 10.1006/jcis.1999.6489 · doi:10.1006/jcis.1999.6489
[10] Bär, Eur. Phys. J. 11 pp 255– (2003)
[11] DOI: 10.1023/A:1020320404339 · Zbl 1018.76015 · doi:10.1023/A:1020320404339
[12] DOI: 10.1017/S0022112010005483 · Zbl 1225.76043 · doi:10.1017/S0022112010005483
[13] DOI: 10.1088/0951-7715/14/6/309 · Zbl 1006.35049 · doi:10.1088/0951-7715/14/6/309
[14] Chem. Eng. Comm. 155 pp 41– (1987)
[15] DOI: 10.1016/0022-0396(90)90074-Y · Zbl 0702.35143 · doi:10.1016/0022-0396(90)90074-Y
[16] J. Fluid Mech. 475 pp 1– (2003)
[17] DOI: 10.1006/jcis.1999.6426 · doi:10.1006/jcis.1999.6426
[18] DOI: 10.1006/jcis.1998.5448 · doi:10.1006/jcis.1998.5448
[19] DOI: 10.1063/1.1515270 · Zbl 1185.76322 · doi:10.1063/1.1515270
[20] DOI: 10.1063/1.3223628 · Zbl 1183.76456 · doi:10.1063/1.3223628
[21] Interfacial Transport Processes and Rheology (1991)
[22] DOI: 10.1051/jp2:1992119 · doi:10.1051/jp2:1992119
[23] DOI: 10.1103/RevModPhys.69.931 · doi:10.1103/RevModPhys.69.931
[24] Phys. Rev. 81 pp 046320– (2010)
[25] Phys. 238 pp 2153– (2009)
[26] DOI: 10.1006/jcis.1993.1142 · doi:10.1006/jcis.1993.1142
[27] DOI: 10.1021/la000759o · doi:10.1021/la000759o
[28] J. Fluid Mech. 475 pp 377– (2003)
[29] DOI: 10.1063/1.870438 · Zbl 1184.76262 · doi:10.1063/1.870438
[30] Electromechanics of Particles (1995)
[31] Intermolecular and Surface Forces (1992)
[32] Phys. 209 pp 117– (2005)
[33] Eur. J. Appl. Math. 12 pp 293– (2001)
[34] Phys. 209 pp 80– (2005)
[35] DOI: 10.1016/j.colsurfa.2005.01.024 · doi:10.1016/j.colsurfa.2005.01.024
[36] DOI: 10.1063/1.2191015 · doi:10.1063/1.2191015
[37] Rev. Mod. Phys. 57 pp 827– (1985) · doi:10.1103/RevModPhys.57.827
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.