×

First-order sequential convex programming using approximate diagonal QP subproblems. (English) Zbl 1274.90378

Summary: Optimization algorithms based on convex separable approximations for optimal structural design often use reciprocal-like approximations in a dual setting; CONLIN and the method of moving asymptotes (MMA) are well-known examples of such sequential convex programming (SCP) algorithms. We have previously demonstrated that replacement of these nonlinear (reciprocal) approximations by their own second order Taylor series expansion provides a powerful new algorithmic option within the SCP class of algorithms. This note shows that the quadratic treatment of the original nonlinear approximations also enables the restatement of the SCP as a series of Lagrange-Newton QP subproblems. This results in a diagonal trust-region SQP type of algorithm, in which the second order diagonal terms are estimated from the nonlinear (reciprocal) intervening variables, rather than from historic information using an exact or a quasi-Newton Hessian approach. The QP formulation seems particularly attractive for problems with far more constraints than variables (when pure dual methods are at a disadvantage), or when both the number of design variables and the number of (active) constraints is very large.

MSC:

90C30 Nonlinear programming
90C55 Methods of successive quadratic programming type

Software:

SCPIP; L-BFGS-B; GALAHAD

References:

[1] Alexandrov AA, Dennis JE, Lewis RM, Torczon V (1998) A trust region framework for managing the use of approximation models in optimization. Struct Multidisc Optim 15:16–23 · doi:10.1007/BF01197433
[2] Barthelemy JFM, Haftka RT (1993) Approximation concepts for optimum structural design - a review. Struct Optim 5:129–144 · doi:10.1007/BF01743349
[3] Borrval T, Petersson J (2001) Large scale topology optimization in 3D using parallel computing. Comput Methods Appl Mech Eng 190:6201–6229 · Zbl 1022.74036 · doi:10.1016/S0045-7825(01)00216-X
[4] Bruyneel M, Duysinx P, Fleury C (2002) A family of MMA approximations for structural optimization. Struct Multidisc Optim 24:263–276 · doi:10.1007/s00158-002-0238-7
[5] Conn AR, Gould NIM, Toint PL (2000) Trust-region methods. MPS/SIAM Series on Optimization, SIAM, Philadelphia · Zbl 0958.65071
[6] Duysinx P, Bruyneel M, Fleury C (2009) Solution of large scale optimization problems with sequential convex programming. Tech. rep., LTAS - Aerospace and Mechanical Engineering, University of Liège
[7] Falk JE (1967) Lagrange multipliers and nonlinear programming. J Math Anal Appl 19:141–159 · Zbl 0154.44803 · doi:10.1016/0022-247X(67)90028-5
[8] Fleury C (1979) Structural weight optimization by dual methods of convex programming. Int J Numer Methods Eng 14:1761–1783 · Zbl 0425.73077 · doi:10.1002/nme.1620141203
[9] Fleury C (1989) Efficient approximation concepts using second order information. Int J Numer Methods Eng 28:2041–2058 · Zbl 0718.73057 · doi:10.1002/nme.1620280905
[10] Fleury C (1993) Mathematical programming methods for constrained optimization: dual methods. In: Kamat M (ed) Structural optimization: status and promise of progress in astronautics and aeronautics. Progress in Astronautics and Aeronautics, vol 150, AIAA, chap 7, pp 123–150
[11] Fleury C (2009) Structural optimization methods for large scale problems: computational time issues. In: Proc. 8th world congress on structural and multidisciplinary optimization, Lisbon, paper 1184
[12] Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428 · Zbl 0585.73152 · doi:10.1002/nme.1620230307
[13] Fleury C, Zhang WH (2000) Selection of appropriate approximation schemes in multi-disciplinary engineering optimization. Adv Eng Softw 31:385–389 · doi:10.1016/S0965-9978(00)00006-5
[14] Gould N, Orban D, Toint PL (2004) GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans Math Softw 29:353–372 · Zbl 1068.90525 · doi:10.1145/962437.962438
[15] Gould N, Orban D, Toint P (2005) Numerical methods for large-scale nonlinear optimization. Acta Numerica 14:299–361 · Zbl 1119.65337 · doi:10.1017/S0962492904000248
[16] Groenwold AA, Etman LFP (2008) Sequential approximate optimization using dual subproblems based on incomplete series expansions. Struct Multidisc Optim 36:547–570 · Zbl 1273.74388 · doi:10.1007/s00158-007-0197-0
[17] Groenwold AA, Etman LFP (2010a) On the conditional acceptance of iterates in SAO algorithms based on convex separable approximations. Struct Multidisc Optim 42:165–178 · doi:10.1007/s00158-010-0498-6
[18] Groenwold AA, Etman LFP (2010b) A quadratic approximation for structural topology optimization. Int J Numer Methods Eng 82:505–524 · Zbl 1188.74047
[19] Groenwold AA, Etman LFP, Snyman JA, Rooda JE (2007) Incomplete series expansion for function approximation. Struct Multidisc Optim 34:21–40 · Zbl 1273.74376 · doi:10.1007/s00158-006-0070-6
[20] Groenwold AA, Wood DW, Etman LFP, Tosserams S (2009) A globally convergent optimization algorithm using conservative convex separable diagonal quadratic approximations. AIAA J 47:2649–2657 · doi:10.2514/1.41975
[21] Groenwold AA, Etman LFP, Wood DW (2010) Approximated approximations in SAO. Struct Multidisc Optim 41:39–56 · Zbl 1274.90381 · doi:10.1007/s00158-009-0406-0
[22] Haftka RT, Gürdal Z (1991) Elements of structural optimization, 3rd edn. Kluwer Academic Publishers
[23] Kim JR, Choi DH (2008) Enhanced two-point diagonal quadratic approximation methods for design optimization. Comput Methods Appl Mech Eng 197:846–856 · Zbl 1169.74520 · doi:10.1016/j.cma.2007.09.014
[24] Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Series in Operations Research, Springer, Berlin · Zbl 1104.65059
[25] Schmit L, Farshi B (1974) Some approximation concepts for structural synthesis. AIAA J 12:692–699 · doi:10.2514/3.49321
[26] Schmit LA, Miura H (1976) Approximation concepts for efficient structural synthesis. Tech. Rep. Report NASA-CR 2552, NASA
[27] Starnes Jr JH, Haftka RT (1979) Preliminary design of composite wings for buckling, stress and displacement constraints. J Aircr 16:564–570 · doi:10.2514/3.58565
[28] Svanberg K (1987) The method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373 · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[29] Svanberg K (1993) Some second order methods for structural optimization. In: Rozvany G (ed) Optimization of Large Structural Systems, NATA ASI series, vol 231, Kluwer Academic Publishers, pp 567–578
[30] Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12:555–573 · Zbl 1035.90088 · doi:10.1137/S1052623499362822
[31] van Keulen F, Haftka RT, Kim NH (2005) Review of options for structural design sensitivity analysis. part 1: linear systems. Comput Methods Appl Mech Engrg 194:3213–3243 · Zbl 1091.74040 · doi:10.1016/j.cma.2005.02.002
[32] Vanderplaats G (1993) Thirty years of modern structural optimization. Adv Eng Softw 16:81–88 · doi:10.1016/0965-9978(93)90052-U
[33] Vanderplaats GN (1984) Numerical optimization techniques for engineering design. McGraw-Hill, New York · Zbl 0613.90062
[34] Vanderplaats GN (2004) Very large scale continuous and discrete variable optimization. In: Proc. 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, Albany, New York, aIAA-2004-4458
[35] Xu S, Grandhi RV (1998) Effective two-point function approximation for design optimization. AIAA J 36:2269–2275 · doi:10.2514/2.337
[36] Zhang WH, Fleury C (1997) A modification of convex approximation methods for structural optimization. Comput Struct 64:89–95 · Zbl 0919.73099 · doi:10.1016/S0045-7949(96)00147-2
[37] Zhu C, Byrd RH, Lu P, Nocedal J (1994) L-bfgs-b: Fortran subroutines for large scale bound constrained optimization. Tech. Rep. Report NAM-11, Northwestern University, EECS Department · Zbl 0912.65057
[38] Zillober C (1993) A globally convergent version of the method of moving asymptotes. Struct Optim 6:166–174 · doi:10.1007/BF01743509
[39] Zillober C (2001) A combined convex approximation - interior point approach for large scale nonlinear programming. Optim Eng 2:51–73 · Zbl 1078.90583 · doi:10.1023/A:1011822920332
[40] Zillober C (2002) SCPIP - an efficient software tool for the solution of structural optimization problems. Struct Multidisc Optim 24:362–371 · doi:10.1007/s00158-002-0248-5
[41] Zillober C, Schittkowski K, Moritzen K (2004) Very large scale optimization by sequential convex programming. Optim Methods Softw 19:103–120 · Zbl 1074.90028 · doi:10.1080/10556780410001647195
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.