×

Topology optimization of three-dimensional non-centrosymmetric micropolar bodies. (English) Zbl 1274.74406

Summary: The topology optimization problem for linearly elastic micropolar solids is dealt with. The constituent materials are supposed to lack in general of centro-symmetry, which means that force stresses and microcurvatures are coupled, and so are couple stresses and micropolar strains. The maximum global stiffness is taken as objective function. According to the SIMP model, the constitutive tensors are assumed to be smooth functions of the design variable, that is, the material density. Optimal material distributions are obtained for several significant three-dimensional cases. The differences respect to the optimal configurations obtained with classical Cauchy materials and centrosymmetric materials are pointed out. The influence of the constants defining the non-centrosymmetric behaviour on the optimal configurations is discussed.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74B05 Classical linear elasticity
74A35 Polar materials

Software:

top.m
Full Text: DOI

References:

[1] Alderson A, Alderson KL, Attard D, Evans KE, Gatt R, Grima JN, Miller W, Ravirala N, Smith CW, Zied K (2010) Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading. Compos Sci Technol 70(7):1042–1048 · doi:10.1016/j.compscitech.2009.07.009
[2] Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202 · doi:10.1007/BF01650949
[3] Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[4] Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69:635–654 · Zbl 0957.74037 · doi:10.1007/s004190050248
[5] Bendsøe MP, Sigmund O (2003) Topology optimization–theory, methods and applications. Springer, Berlin
[6] Bigoni D, Drugan WJ (2007) Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. J Appl Mech 74(4):741–753 · doi:10.1115/1.2711225
[7] Casolo S (2006) Macroscopic modelling of structured materials: relationship between orthotropic Cosserat continuum and rigid elements. Int J Solids Struct 43(3–4):475–496 · Zbl 1119.74344 · doi:10.1016/j.ijsolstr.2005.03.037
[8] Cheng GD, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17:305–323 · Zbl 0457.73079 · doi:10.1016/0020-7683(81)90065-2
[9] Cheng GD, Olhoff N (1982) Regularized formulation for optimal design of axisymmetric plates. Int J Solids Struct 18:153–169 · Zbl 0468.73106 · doi:10.1016/0020-7683(82)90023-3
[10] Cowin SC, Nunziato JW (1983) Linear elastic materials with voids. J Elast 13:125–147 · Zbl 0523.73008 · doi:10.1007/BF00041230
[11] Dendievel R, Forest S, Canova G (1998) An estimation of overall properties of heterogeneous Cosserat materials. J Phys IV France 8:111–118
[12] Eringen AC (1966) Linear theory of micropolar elasticity. J Math Mech 15(6):909–923 · Zbl 0145.21302
[13] Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389 · doi:10.1115/1.1388075
[14] Fatemi J, Onck PR, Poort G, Van Keulen F (2003) Cosserat moduli of anisotropic cancellous bone: a micromechanical analysis. J Phys IV France 105:273–280 · doi:10.1051/jp4:20030197
[15] Fujii D, Chen BC, Kikuchi N (2001) Composite material design of two-dimensional structures using the homogenization design method. Int J Numer Methods Eng 50(9):2031–2051 · Zbl 0994.74055 · doi:10.1002/nme.105
[16] Gauthier RD, Jahsman WE (1975) A quest for micropolar elastic constants. J Appl Mech ASME 42:369–374 · doi:10.1115/1.3423583
[17] Haug EJ, Choi KK, Komkov V (1986) Design sensitivity analysis of structural systems. Academic Press, New York · Zbl 0618.73106
[18] Hu G, Liu X, Lu TJ (2005) A variational method for non-linear micropolar composites. Mech Mater 37:407–425 · doi:10.1016/j.mechmat.2004.03.006
[19] Koiter WT (1964) Couple stress in the theory of elasticity, Parts I and II. Proc Koninklijke Ned Akad Wetenschappen 67:17–44
[20] Lakes RS, Benedict RL (1982) Noncentrosymmetry in micropolar elasticity. Int J Eng Sci 29(10):1161–1167 · Zbl 0491.73004 · doi:10.1016/0020-7225(82)90096-9
[21] Lakes RS (1993) Materials with structural hierarchy. Nature 361:511–515 · doi:10.1038/361511a0
[22] Lakes RS (1995) Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Mühlhaus H (ed) Continuum models for materials with microstructure. J. Wiley, pp 1–25 · Zbl 0900.73005
[23] Lakes R (2001) Elastic and viscoelastic behavior of chiral materials. Int J Mech Sci 43(7):1579–1589 · Zbl 1049.74012 · doi:10.1016/S0020-7403(00)00100-4
[24] Liu S, Su W (2010) Topology optimization of couple-stress material structures. Struct Multidisc Optim 40:319–327 · Zbl 1274.74364 · doi:10.1007/s00158-009-0367-3
[25] Lorato A, Innocenti P, Scarpa F, Alderson A, Alderson KL, Zied KM, Ravirala N, Miller W, Smith CW, Evans KE (2010) The transverse elastic properties of chiral honeycombs. Compos Sci Technol 70(7):1057–1063 · doi:10.1016/j.compscitech.2009.07.008
[26] Prall D, Lakes RS (1997) Properties of a chiral honeycomb with a Poisson’s ratio of . Int J Mech Sci 39(3):305–314 · Zbl 0894.73018 · doi:10.1016/S0020-7403(96)00025-2
[27] Rovati M, Veber D (2007) Optimal topologies for micropolar solids. Struct Multidisc Optim 33(1):47–59 · doi:10.1007/s00158-006-0031-0
[28] Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237 · Zbl 1274.74004 · doi:10.1007/s00158-007-0217-0
[29] Save M, Prager W (1985) Structural optimization, vol 1. Optimality criteria. Plenum Press, New York · Zbl 0649.73042
[30] Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2313 · Zbl 0946.74557 · doi:10.1016/0020-7683(94)90154-6
[31] Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127 · doi:10.1007/s001580050176
[32] Sigmund O, Torquato S (1997) Design of materials with extreme thermal expansion using a three-phase topology optimization method. J Mech Phys Solids 45(6):1037–1067 · doi:10.1016/S0022-5096(96)00114-7
[33] Su W, Liu Sh (2010) Size-dependent optimal microstructure design based on couple-stress theory. Struct Multidisc Optim 42(2):243–254 · doi:10.1007/s00158-010-0484-z
[34] Veber D, Taliercio A (2010) Topology optimization for chiral elastic bodies. In: Proc 10th int conf on computational structures technology, Valencia (E), paper no 316 (CD ROM), 14–17 September 2010
[35] Yang Sh-K, Hsia Sh-Y (2000) Chiral composites as underwater acoustic attenuators. IEEE J Oceanic Eng 25(1):139–145 · doi:10.1109/48.820746
[36] Zhang W, Sun Sh (2006) Scale-related topology optimization of cellular materials and structures. Int J Numer Methods Eng 68(9):993–1011 · Zbl 1127.74035 · doi:10.1002/nme.1743
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.