×

Modeling complex spatial dependencies: low-rank spatially varying cross-covariances with application to soil nutrient data. (English) Zbl 1303.62071

Summary: Advances in geo-spatial technologies have created data-rich environments which provide extraordinary opportunities to understand the complexity of large and spatially indexed data in ecology and the natural sciences. Our current application concerns analysis of soil nutrients data collected at La Selva Biological Station, Costa Rica, where inferential interest lies in capturing the spatially varying relationships among the nutrients. The objective here is to interpolate not just the nutrients across space, but also associations among the nutrients that are posited to vary spatially. This requires spatially varying cross-covariance models. Fully process-based specifications using matrix-variate processes are theoretically attractive but computationally prohibitive. Here we develop fully process-based low-rank but non-degenerate spatially varying cross-covariance processes that can effectively yield interpolate cross-covariances at arbitrary locations. We show how a particular low-rank process, the predictive process, which has been widely used to model large geostatistical datasets, can be effectively deployed to model non-degenerate cross-covariance processes. We produce substantive inferential tools such as maps of nonstationary cross-covariances that constitute the premise of further mechanistic modeling and have hitherto not been easily available for environmental scientists and ecologists.

MSC:

62P12 Applications of statistics to environmental and related topics
62M30 Inference from spatial processes

Software:

spBayes; FRK; BayesDA
Full Text: DOI

References:

[1] Apanasovich, T. V., and Genton, M. G. (2010), ”Cross-Covariance Functions for Multivariate Random Fields Based on Latent Dimensions,” Biometrika, 97, 15–30. · Zbl 1183.62164 · doi:10.1093/biomet/asp078
[2] Banerjee, S., Carlin, B. P., and Gelfand, A. E. (2004), Hierarchical Modeling and Analysis for Spatial Data, Boca Raton: Chapman and Hall/CRC Press. · Zbl 1053.62105
[3] Banerjee, S., and Johnson, G. A. (2006), ”Coregionalized Single- and Multi-Resolution Spatially-Varying Growth Curve Modelling With Application to Weed Growth,” Biometrics, 61, 617–625 · Zbl 1111.62115 · doi:10.1111/j.1541-0420.2005.00320.x
[4] Banerjee, S., Gelfand, A. E., Finley, A. O., and Sang, H. (2008), ”Gaussian Predictive Process Models for Large Spatial Datasets,” Journal of the Royal Statistical Society, Series B, 70, 825–848. · Zbl 1533.62065 · doi:10.1111/j.1467-9868.2008.00663.x
[5] Banerjee, S., Finley, A. O., Waldmann, P., and Ericcson, T. (2010), ”Hierarchical Spatial Process Models for Multiple Traits in Large Genetic Trials,” Journal of the American Statistical Association, 105, 506–521. · Zbl 1392.62316 · doi:10.1198/jasa.2009.ap09068
[6] Cressie, N. (1993), Statistics for Spatial Data (2nd ed.), New York: Wiley. · Zbl 0825.62477
[7] Cressie, N., and Johannesson, G. (2008), ”Fixed Rank Kriging for Very Large Spatial Data Sets,” Journal of the Royal Statistical Society, Series B, 70, 209–226. · Zbl 05563351 · doi:10.1111/j.1467-9868.2007.00633.x
[8] Cressie, N. A. C., and Wikle, C. K. (2011), Statistics for Spatio-Temporal Data, New York: Wiley. · Zbl 1273.62017
[9] Daniels, M. J., and Kass, R. E. (1999), ”Nonconjugate Bayesian Estimation of Covariance Matrices and Its Use in Hierarchical Models,” Journal of the American Statistical Association, 94, 1254–1263. · Zbl 1069.62508 · doi:10.1080/01621459.1999.10473878
[10] Diez, J. M., and Pulliam, H. R. (2007), ”Hierarchical Analysis of Species Distributions and Abundance Across Environmental Gradients,” Ecology, 88, 3144–3152. · doi:10.1890/07-0047.1
[11] Finley, A. O., Banerjee, S., and McRoberts, R. E. (2009), ”Hierarchical Spatial Models for Predicting Tree Species Assemblages Across Large Domains,” Annals of Applied Statistics, 3, 1052–1079. · Zbl 1196.62121 · doi:10.1214/09-AOAS250
[12] Finley, A. O., Banerjee, S., Ek, A. R., and McRoberts, R. E. (2008), ”Bayesian Multivariate Process Modeling for Prediction of Forest Attributes,” Journal of Agricultural, Biological, and Environmental Statistics, 13, 60–83. · Zbl 1306.62272 · doi:10.1198/108571108X273160
[13] Finley, A. O., Sang, H., Banerjee, S., and Gelfand, A. E. (2009), ”Improving the Performance of Predictive Process Modeling for Large Datasets,” Computational Statistics & Data Analysis, 53, 2873–2884. · Zbl 1453.62090 · doi:10.1016/j.csda.2008.09.008
[14] Finzi, A. C., van Breemen, N., and Canham, C. D. (1998), ”Canopy Tree-Soil Interactions Within Temperate Forests: Species Effects on pH and Base Cations,” Ecological Applications, 8, 447–454.
[15] Gelfand, A. E., and Banerjee, S. (2010), ”Multivariate Spatial Process Models,” in Handbook of Spatial Statistics, eds. A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes, Boca Raton: Taylor and Francis/CRC, pp. 495–516.
[16] Gelfand, A. E., and Ghosh, S. K. (1998), ”Model Choice: A Minimum Posterior Predictive Loss Approach,” Biometrika, 85, 1–11. · Zbl 0904.62036 · doi:10.1093/biomet/85.1.1
[17] Gelfand, A. E., Schmidt, A. M., Banerjee, S., and Sirmans, C. F. (2004), ”Nonstationary Multivariate Process Modeling Through Spatially Varying Coregionalization” (with discussion), Test, 13, 263–312. · Zbl 1069.62074 · doi:10.1007/BF02595775
[18] Gelman, A., and Rubin, D. (1992), ”Inference From Iterative Simulation Using Multiple Sequences,” Statistical Science, 7, 457–511. · Zbl 1386.65060 · doi:10.1214/ss/1177011136
[19] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004), Bayesian Data Analysis (2nd ed.), Boca Raton: Chapman and Hall/CRC Press.
[20] Gneiting, T., and Guttorp, P. (2010), ”Continuous-Parameter Stochastic Process Theory,” in Handbook of Spatial Statistics, eds. A. E. Gelfand, P. Diggle, P. Guttorp, and M. Fuentes, Boca Raton: Taylor and Francis/CRC, pp. 17–28.
[21] Gneiting, T., Kleiber, W., and Schlather, M. (2010), ”Matérn Cross-Covariance Functions for Multivariate Random Fields,” Journal of the American Statistical Association, 105, 1167–1177. · Zbl 1390.62194 · doi:10.1198/jasa.2010.tm09420
[22] Guhaniyogi, R., Finley, A. O., Banerjee, S., and Gelfand, A. E. (2011), ”Adaptive Gaussian Predictive Process Models for Large Spatial Datasets,” Environmetrics, 22, 997–1007. · doi:10.1002/env.1131
[23] Harville, D. A. (1997), Matrix Algebra From a Statistician’s Perspective, New York: Springer. · Zbl 0881.15001
[24] Henderson, H. V., and Searle, S. R. (1981), ”On Deriving the Inverse of a Sum of Matrices,” SIAM Review, 23, 53–60. · Zbl 0451.15005 · doi:10.1137/1023004
[25] Hodges, J. S., and Reich, B. J. (2010), ”Adding Spatially-Correlated Errors Can Mess up the Fixed Effect You Love,” American Statistician, 64, 335–344. · Zbl 1217.62095 · doi:10.1198/tast.2010.10052
[26] Holste, E. K., Kobe, R. K., and Vriesendorp, C. F. (2011), ”Seedling Growth Responses to Soil Nutrients in a Wet Tropical Forest Understory,” Ecology, 92, 1828–1838. · doi:10.1890/10-1697.1
[27] Houlton, B. Z., Wang, Y. P., Vitousek, P. M., and Field, C. B. (2008), ”A Unifying Framework for Dinitrogen Fixation in the Terrestrial Biosphere,” Nature, 454, 327–331. · doi:10.1038/nature07028
[28] Kang, E. L., and Cressie, N. (2011), ”Bayesian Inference for the Spatial Random Effects Model,” Journal of the American Statistical Association, 106, 972–983. · Zbl 1229.62008 · doi:10.1198/jasa.2011.tm09680
[29] Kobe, R. K., and Vriesendorp, C. F. (2009), ”Size of Sampling Unit Strongly Influences Detection of Seedling Limitation in a Wet Tropical Forest,” Ecology Letters, 12, 220–228. · doi:10.1111/j.1461-0248.2008.01278.x
[30] Majumdar, A., Paul, D., and Bautista, D. (2010), ”A Generalized Convolution Model for Multivariate Nonstationary Spatial Processes,” Statistica Sinica, 20, 675–695. · Zbl 1187.62153
[31] McCarthy-Neumann, S., and Kobe, R. K. (2010), ”Conspecific Plant-Soil Feedbacks Reduce Survivorship and Growth of Tropical Tree Seedlings,” Journal of Ecology, 98, 396–407. · doi:10.1111/j.1365-2745.2009.01619.x
[32] Ovaskainen, O., Hottola, J., and Siitonen, J. (2010), ”Modeling Species Co-occurrence by Multivariate Logistic Regression Generates New Hypotheses on Fungal Interactions,” Ecology, 9, 2414–2521.
[33] Paciorek, C. J. (2010), ”The Importance of Scale for Spatial-Confounding Bias and Precision of Spatial Regression Estimators,” Statistical Science, 107–125. · Zbl 1328.62596
[34] Pourahmadi, M. (1999), ”Joint Mean-Covariance Model With Applications to Longitudinal Data: Unconstrained Parameterisation,” Biometrika, 86, 677–690. · Zbl 0949.62066 · doi:10.1093/biomet/86.3.677
[35] Rao, C. R. (1973), Linear Statistical Inference and Its Applications (2nd ed.), New York: Wiley. · Zbl 0256.62002
[36] Robert, C. P., and Casella, G. (2010), An Introduction to Monte Carlo Methods With R, New York: Springer. · Zbl 1196.65025
[37] Roberts, G. O., and Rosenthal, J. S. (2009), ”Examples of Adaptive MCMC,” Journal of Computational and Graphical Statistics, 18, 349–367. · doi:10.1198/jcgs.2009.06134
[38] Royle, J. A., and Berliner, L. M. (1999), ”A Hierarchical Approach to Multivariate Spatial Modeling and Prediction,” Journal of Agricultural, Biological, and Environmental Statistics, 4, 29–56. · doi:10.2307/1400420
[39] Sang, H., Jun, M., and Huang, J. Z. (2011), ”Covariance Approximation for Large Multivariate Spatial Data Sets With an Application to Multiple Climate Model Errors,” Annals of Applied Statistics, 4, 2519–2548. · Zbl 1234.62071 · doi:10.1214/11-AOAS478
[40] Stein, M. L. (1999), Interpolation of Spatial Data: Some Theory of Kriging, New York: Springer. · Zbl 0924.62100
[41] – (2008), ”A Modeling Approach for Large Spatial Datasets,” Journal of the Korean Statistical Society, 37, 3–10. · Zbl 1196.62123 · doi:10.1016/j.jkss.2007.09.001
[42] Townsend, A. R., Asner, G. P., and Cleveland, C. C. (2008), ”The Biogeochemical Heterogeneity of Tropical Soils,” Trends in Ecology & Evolution, 23, 424–431. · doi:10.1016/j.tree.2008.04.009
[43] Wackernagel, H. (2006), Multivariate Geostatistics: An Introduction With Applications (3rd ed.), New York: Springer. · Zbl 0912.62131
[44] Waddle, J. H., Dorazio, R. M., Walls, S. C., Rice, K. G., Beauchamp, J., Schuman, M. J., and Mazzotti, F. J. (2010), ”A New Parameterization for Estimating Co-occurrence of Interacting Species,” Ecological Applications, 20, 1467–1475. · doi:10.1890/09-0850.1
[45] Walker, T. W., and Syers, J. K. (1976), ”The Fate of Phosphorus During Pedogenesis,” Geoderma, 15, 1–19. · doi:10.1016/0016-7061(76)90066-5
[46] Wardle, D. A., Walker, L. R., and Bardgett, R. D. (2004), ”Ecosystem Properties and Forest Decline in Contrasting Long-Term Chronosequences,” Science, 305, 509–512. · doi:10.1126/science.1098778
[47] Yaglom, A. M. (1987), Correlation Theory of Stationary and Related Random Functions, Vol. I, New York: Springer. · Zbl 0685.62077
[48] Zhang, H. (2007), ”Maximum-Likelihood Estimation for Multivariate Spatial Linear Coregionalization Models,” Environmetrics, 18, 125–139. · doi:10.1002/env.807
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.