×

The exotic (higher order Lévy) Laplacians generate the Markov processes given by distribution derivatives of white noise. (English) Zbl 1285.60069

The paper represents a conclusion to two previous papers by the same authors [ibid. 12, No. 1, 1–19 (2009); errata ibid. 13, No. 2, 345 (2010; Zbl 1172.60019)] and [ibid. 14, No. 1, 1–14 (2011; Zbl 1213.60114)], where exotic Laplacians were proven to be related to Volterra-Gross Laplacians, and exotic Laplacians of order \(2p+1\) (\(p\in\mathbb N\)) were proven to be generators of infinite-dimensional Brownian motions corresponding to the \(p\)th-distributional derivative of the standard Brownian motion. The current paper extends this result to exotic Laplacians of even order and for fractional order. The authors prove that any exotic Laplacian of order \(2a\) (\(a\in\mathbb R_+\)) is the generator of infinite-dimensional white noise corresponding to the \(a\)th-distributional derivative of standard white noise. In particular, for \(a=\frac12\), one retrieves the classical Lévy Laplacian.

MSC:

60H40 White noise theory
60J25 Continuous-time Markov processes on general state spaces
81S25 Quantum stochastic calculus
Full Text: DOI

References:

[1] DOI: 10.1142/S0219025706002329 · Zbl 1097.60065 · doi:10.1142/S0219025706002329
[2] Accardi L., Russ. J. Math. Phys. 2 pp 235–
[3] L. Accardi and O. G. Smolyanov, Mathematical Approach to Fluctuations II, ed. T. Hida (World Scientific, Singapore, 1995) pp. 31–47.
[4] Accardi L., Doklady Akademii Nauk 424 pp 583–
[5] DOI: 10.1142/S0219025709003513 · Zbl 1172.60019 · doi:10.1142/S0219025709003513
[6] DOI: 10.1142/S0219025711004262 · Zbl 1213.60114 · doi:10.1142/S0219025711004262
[7] DOI: 10.1142/S0219025799000072 · Zbl 0936.46033 · doi:10.1142/S0219025799000072
[8] DOI: 10.1090/S0002-9939-01-06147-0 · Zbl 0989.60063 · doi:10.1090/S0002-9939-01-06147-0
[9] Gel’fand I. M., Generalized Functions 4 (1964)
[10] DOI: 10.1007/978-94-017-3680-0 · doi:10.1007/978-94-017-3680-0
[11] Hille E., Amer. Math. Soc. Colloquium Publications 31
[12] Ji U. C., Bull. Korean Math. Soc. 37 pp 601–
[13] DOI: 10.1142/S0219025707002713 · Zbl 1118.60057 · doi:10.1142/S0219025707002713
[14] Kuo H.-H., White Noise Distribution Theory (1996)
[15] DOI: 10.1016/0022-1236(90)90028-J · Zbl 0749.46029 · doi:10.1016/0022-1236(90)90028-J
[16] DOI: 10.1142/S0219025702000882 · Zbl 1050.60071 · doi:10.1142/S0219025702000882
[17] Lévy P., Lecons d’Analyse Fonctionnelle (1922)
[18] Lévy P., Problèms Concrets d’Analyse Fonctionnelle (1951)
[19] DOI: 10.1017/S0027763000003020 · Zbl 0682.22015 · doi:10.1017/S0027763000003020
[20] DOI: 10.1016/0022-1236(91)90156-Y · Zbl 0826.46035 · doi:10.1016/0022-1236(91)90156-Y
[21] Saitô K., Nagoya Math. J. 108 pp 67– · Zbl 0646.60070 · doi:10.1017/S0027763000002658
[22] DOI: 10.1142/S0219025798000223 · Zbl 0936.60058 · doi:10.1142/S0219025798000223
[23] DOI: 10.1023/A:1010790812834 · Zbl 0990.60066 · doi:10.1023/A:1010790812834
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.