×

Infinitely many lattice surfaces with special pseudo-Anosov maps. (English) Zbl 1322.30015

Summary: We give explicit pseudo-Anosov homeomorphisms with vanishing Sah-Arnoux-Fathi invariant. Any translation surface whose Veech group is commensurable to any of a large class of triangle groups is shown to have an affine pseudo-Anosov homeomorphism of this type. We also apply a reduction to finite triangle groups and thereby show the existence of nonparabolic elements in the periodic field of certain translation surfaces.

MSC:

30F60 Teichmüller theory for Riemann surfaces

References:

[1] P. Arnoux \({ref.surNamesEn}, Échanges d'intervalles et flots sur les surfaces,, in, 29, 5 (1981\) · Zbl 0471.28014
[2] _____\({ref.surNamesEn}, ``Thèse de \(3^e\) Cycle,'', Université de Reims (1981\)
[3] Geometrical models for substitutions,, Exp. Math., 20, 97 (2011) · Zbl 1266.37008 · doi:10.1080/10586458.2011.544590
[4] P. Arnoux and T. A. Schmidt \({ref.surNamesEn}, Veech surfaces with nonperiodic directions in the trace field,, J. Mod. Dyn., 3, 611 (2009\) · Zbl 1186.37050 · doi:10.3934/jmd.2009.3.611
[5] P. Arnoux and J.-C. Yoccoz \({ref.surNamesEn}, Construction de difféomorphismes pseudo-Anosov,, C. R. Acad. Sci. Paris Sér. I Math., 292, 75 (1981\) · Zbl 0478.58023
[6] W. Borho \({ref.surNamesEn}, Kettenbrüche im Galoisfeld,, Abh. Math. Sem. Univ. Hamburg, 39, 76 (1973\) · Zbl 0267.10034 · doi:10.1007/BF02992820
[7] W. Borho and G. Rosenberger \({ref.surNamesEn}, Eine Bemerkung zur Hecke-Gruppe \(G(\lambda )\),, Abh. Math. Sem. Univ. Hamburg, 39, 83 (1973\) · Zbl 0267.10035 · doi:10.1007/BF02992821
[8] I. Bouw and M. Möller \({ref.surNamesEn}, Teichmüller curves, triangle groups, and Lyapunov exponents,, Ann. of Math. (2), 172, 139 (2010\) · Zbl 1203.37049 · doi:10.4007/annals.2010.172.139
[9] Natural extensions for the Rosen fractions,, Trans. Amer. Math. Soc., 352, 1277 (1999) · Zbl 0938.11036 · doi:10.1090/S0002-9947-99-02442-3
[10] K. Calta \({ref.surNamesEn}, Veech surfaces and complete periodicity in genus two,, J. Amer. Math. Soc., 17, 871 (2004\) · Zbl 1073.37032 · doi:10.1090/S0894-0347-04-00461-8
[11] K. Calta and T. A. Schmidt \({ref.surNamesEn}, Continued fractions for a class of triangle groups,, J. Austral. Math. Soc., 93, 21 (2012\) · Zbl 1336.11051 · doi:10.1017/S1446788712000651
[12] K. Calta and J. Smillie \({ref.surNamesEn}, Algebraically periodic translation surfaces,, J. Mod. Dyn., 2, 209 (2008\) · Zbl 1151.57015 · doi:10.3934/jmd.2008.2.209
[13] P. L. Clark and J. Voight \({ref.surNamesEn}, Algebraic curves uniformized by congruence subgroups of triangle groups,, preprint (2011\)
[14] L. E. Dickson \({ref.surNamesEn}, ``Linear Groups: With an Exposition of the Galois Field Theory,'', Dover Publications (1958\) · Zbl 0082.24901
[15] Principal congruence subgroups of the Hecke groups,, J. Number Th., 85, 220 (2000) · Zbl 0964.11023 · doi:10.1006/jnth.2000.2542
[16] Generalized continued fractions and orbits under the action of Hecke triangle groups,, Acta Arith., 134, 337 (2008) · Zbl 1219.11105 · doi:10.4064/aa134-4-4
[17] P. Hubert and E. Lanneau \({ref.surNamesEn}, Veech groups without parabolic elements,, Duke Math. J., 133, 335 (2006\) · Zbl 1101.30044 · doi:10.1215/S0012-7094-06-13326-4
[18] P. Hubert and T. A. Schmidt \({ref.surNamesEn}, Invariants of translation surfaces,, Ann. Inst. Fourier (Grenoble), 51, 461 (2001\) · Zbl 0985.32008 · doi:10.5802/aif.1829
[19] Interval-exchange transformations over algebraic number fields: The cubic Arnoux-Yoccoz model,, Dyn. Syst., 22, 73 (2007) · Zbl 1128.37026 · doi:10.1080/14689360601028126
[20] _____\({ref.surNamesEn}, Geometric representation of interval-exchange maps over algebraic number fields,, Nonlinearity, 21, 149 (2008\) · Zbl 1141.37020 · doi:10.1088/0951-7715/21/1/009
[21] W. P. Hooper \({ref.surNamesEn}, Grid graphs and lattice surfaces,, preprint (2009\)
[22] R. Kenyon and J. Smillie \({ref.surNamesEn}, Billiards in rational-angled triangles,, Comment. Mathem. Helv., 75, 65 (2000\) · Zbl 0967.37019 · doi:10.1007/s000140050113
[23] A. Leutbecher \({ref.surNamesEn}, Über die Heckeschen Gruppen G \((\lambda)\),, Abh. Math. Sem. Hamb., 31, 199 (1967\) · Zbl 0161.27601
[24] D. Long and A. Reid \({ref.surNamesEn}, Pseudomodular surfaces,, J. Reine Angew. Math., 552, 77 (2002\) · Zbl 1083.20043 · doi:10.1515/crll.2002.094
[25] A. M. Macbeath \({ref.surNamesEn}, Generators of linear fractional groups,, in, 14 (1969\)
[26] C. Maclachlan and A. Reid \({ref.surNamesEn}, ``The Arithmetic of Hyperbolic 3-Manifolds,'', Graduate Texts in Mathematics, 219 (2003\) · Zbl 1025.57001
[27] C. T. McMullen \({ref.surNamesEn}, Teichmüller geodesics of infinite complexity,, Acta Math., 191, 191 (2003\) · Zbl 1131.37052 · doi:10.1007/BF02392964
[28] _____\({ref.surNamesEn}, Cascades in the dynamics of measured foliations,, preprint (2012\)
[29] T. A. Schmidt and K. M. Smith \({ref.surNamesEn}, Galois orbits of principal congruence Hecke curves,, J. London Math. Soc. (2), 67, 673 (2003\) · Zbl 1046.11046 · doi:10.1112/S0024610703004113
[30] L. A. Parson \({ref.surNamesEn}, Normal congruence subgroups of the Hecke groups \(G(2^{1/2})\) and \(G(3^{1/2})\),, Pacific J. Math., 70, 481 (1977\) · Zbl 0375.10014 · doi:10.2140/pjm.1977.70.481
[31] W. Thurston \({ref.surNamesEn}, On the geometry and dynamics of diffeomorphisms of surfaces,, Bull. Amer. Math. Soc. (N.S.), 19, 417 (1988\) · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6
[32] W. A. Veech \({ref.surNamesEn}, Teichmüller curves in modular space, Eisenstein series, and an application to triangular billiards,, Inv. Math., 97, 553 (1989\) · Zbl 0676.32006 · doi:10.1007/BF01388890
[33] C. Ward \({ref.surNamesEn}, Calculation of Fuchsian groups associated to billiards in a rational triangle,, Ergodic Theory Dynam. Systems, 18, 1019 (1998\) · Zbl 0915.58059 · doi:10.1017/S0143385798117479
[34] A. Wright \({ref.surNamesEn}, Schwartz triangle mappings and Teichmüller curves: The Veech-Ward-Bouw-Möller curves,, Geom. Funct. Anal., 23, 776 (2013\) · Zbl 1267.30099 · doi:10.1007/s00039-013-0221-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.