×

Models of \(p\)-adic mechanics. (English. Russian original) Zbl 1282.70002

Theor. Math. Phys. 174, No. 2, 247-252 (2013); translation from Teor. Mat. Fiz. 174, No. 2, 285-291 (2013).
Summary: We segregate the class of ultrametric (\(p\)-adic) systems within the standard models of classical and quantum mechanics. We show that ultrametric models can be described in the language of standard models but also have several distinguishing properties. In particular, we show that a stronger Poincaré recurrence theorem holds for classical ultrametric dynamical systems. As an example of a quantum \(p\)-adic system, we consider the algebra of commutation relations of the one-dimensional quantum mechanics. We show that this algebra, as in the real case, is isomorphic to the algebra of compact operators.

MSC:

70A99 Axiomatics, foundations
81Q65 Alternative quantum mechanics (including hidden variables, etc.)
47N50 Applications of operator theory in the physical sciences
47S10 Operator theory over fields other than \(\mathbb{R}\), \(\mathbb{C}\) or the quaternions; non-Archimedean operator theory
Full Text: DOI

References:

[1] G. W. Mackey, The Mathematical Foundations of Quantum Mechanics: A Lecture-Note Volume, Benjamin, New York (1963). · Zbl 0114.44002
[2] I. V. Volovich, ”Number theory as the ultimate physical theory,” Preprint TH 4781/87, CERN, Geneva (1987). · Zbl 1258.81074
[3] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian], Fizmatlit, Moscow (1994); English transl. (Series Sov. East Europ. Math., Vol. 1), World Scientific, Singapore (1994). · Zbl 0812.46076
[4] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, p-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009). · Zbl 1187.81004 · doi:10.1134/S2070046609010014
[5] E. I. Zelenov, Vestnik SamGTU. Natural Science Series, 8, No. 1(67), 108–113 (2008).
[6] A. Yu. Khrennikov, Theor. Math. Phys., 97, 1340–1348 (1993). · Zbl 0839.60005 · doi:10.1007/BF01015763
[7] A. Yu. Khrennikov and M. Nilsson, p-Adic Deterministic and Random Dynamical Systems (Math. Its Appl., Vol. 574), Kluwer, Dordrecht (2004).
[8] R. Sikorski, Boolean Algebras, Acad. Press, New York (1964).
[9] A. M. Gleason, J. Math. Mech., 6, 885–893 (1957).
[10] E. I. Zelenov, Theor. Math. Phys., 164, 1190–1197 (2010). · Zbl 1255.81154 · doi:10.1007/s11232-010-0099-y
[11] M. Rieffel, Duke Math. J., 39, 745–752 (1972). · Zbl 0252.43017 · doi:10.1215/S0012-7094-72-03982-8
[12] E. I. Zelenov, Theor. Math. Phys., 86, 143–151 (1991). · Zbl 0737.22014 · doi:10.1007/BF01016165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.