×

Quantum rule for detection probability from Brownian motion in the space of classical fields. (English. Russian original) Zbl 1280.81008

Theor. Math. Phys. 174, No. 2, 298-306 (2013); translation from Teor. Mat. Fiz. 174, No. 2, 342-352 (2013).
Summary: We obtain Born’s rule from the classical theory of random waves in combination with the use of thresholdtype detectors. We consider a model of classical random waves interacting with classical detectors and reproducing Born’s rule. We do not discuss complicated interpretational problems of quantum foundations. The reader can select between the “weak interpretation”, the classical mathematical simulation of the quantum measurement process, and the “strong interpretation”, the classical wave model of the real quantum (in fact, subquantum) phenomena.

MSC:

81P05 General and philosophical questions in quantum theory
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] M. Born, Z. Phys., 37, 863–867 (1926). · doi:10.1007/BF01397477
[2] N. P. Landsman, ”Algebraic quantum mechanics,” in: Compendium of Quantum Physics: Concepts, Experiments, History, and Philosophy (D. Greenberger, K. Hentschel, F. Weinert, and B. Falkenburg, eds.), Springer, Berlin (2009), pp. 6–9; ”The Born rule and its interpretation,” in: Op. cit., pp. 64–70; ”Quantization (systematic),” in: Op. cit., pp. 510–513; ”Quasi-classical limit,” in: Op. cit., pp. 626–629.
[3] G. ’t Hooft, ”Quantum gravity as a dissipative deterministic system,” arXiv:gr-qc/9903084v3 (1999). · Zbl 0937.83015
[4] G. ’t Hooft, ”The mathematical basis for deterministic quantum mechanics,” arXiv:quant-ph/0604008v2 (2006).
[5] G. ’t Hooft, Her. Russ. Acad. Sci., 81, 907–911 (2011); arXiv:quant-ph/0701097v1 (2007).
[6] A. Yu. Khrennikov, J. Phys. A, 38, 9051–9073 (2005); arXiv:quant-ph/0505228v4 (2005). · Zbl 1117.82009 · doi:10.1088/0305-4470/38/41/015
[7] A. Yu. Khrennikov, Found. Phys. Lett., 18, 637–650 (2006). · Zbl 1099.81005 · doi:10.1007/s10702-005-1317-y
[8] A. Yu. Khrennikov, Phys. Let. A, 357, 171–176 (2006). · Zbl 1236.81178 · doi:10.1016/j.physleta.2006.04.046
[9] A. Yu. Khrennikov, Found. Phys. Lett., 19, 299–319 (2006). · Zbl 1102.81068 · doi:10.1007/s10702-006-0796-9
[10] A. Yu. Khrennikov, Nuovo Cimento B, 121, 505–521 (2006); arXiv:hep-th/0604163v1 (2006).
[11] A. Yu. Khrennikov, Europhys. Lett., 88, 40005 (2009). · doi:10.1209/0295-5075/88/40005
[12] A. Yu. Khrennikov, Europhys. Lett., 90, 40004 (2010). · doi:10.1209/0295-5075/90/40004
[13] A. Yu. Khrennikov, J. Russian Laser Research, 31, 191–200 (2010). · doi:10.1007/s10946-010-9137-3
[14] A. Yu. Khrennikov, M. Ohya, and N. Watanabe, J. Russian Laser Research, 31, 462–468 (2010). · doi:10.1007/s10946-010-9167-x
[15] P. Grangier, ”Etude expérimentale de propriétés non-classiques de la lumi‘ere: interférence à un seul photon,” Doctoral dissertation, Université de Paris-Sud, Centre D’Orsay (1986).
[16] R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York (1965). · Zbl 0176.54902
[17] A. Yu. Khrennikov, Prog. Theoret. Phys., 128, 31–58 (2012). · Zbl 1257.81007 · doi:10.1143/PTP.128.31
[18] A. Yu. Khrennikov, B. Nilsson, and S. Nordebo, J. Phys., 361, 012030 (2012); arXiv:1112.5591v1 [quant-ph] (2011).
[19] V. S. Vladimirov, Methods of the Theory of Generalized Functions (Anal. Meth. Spec. Funct., Vol. 6), Taylor and Francis, London (2002). · Zbl 1078.46029
[20] I. V. Volovich, ”Towards quantum information theory in space and time,” arXiv:quant-ph/0203030v1 (2002). · Zbl 1022.81007
[21] A. Yu. Khrennikov and I. V. Volovich, ”Quantum nonlocality, EPR model, and Bell’s theorem,” in: Proc. 3r d Intl. Sakharov Conference on Physics (Moscow, 24–29 June 2002, A. Semikhatov, M. Vasiliev, and V. Zaikin, eds.), Vol. 2, World Scientific, Singapore (2003), pp. 269–276.
[22] A. Yu. Khrennikov and I. Volovich, ”Local realism, contextualism, and loopholes in Bell’s experiments,” in: Foundations of Probability and Physics 2 (Math. Model. Phys., Engin., Cognit. Sci., Vol. 5, A. Yu. Khrennikov, ed.), Växjö Univ. Press, Växjö (2003), pp. 325–343.
[23] A. Yu. Khrennikov and I. Volovich, Soft Computing, 10, 521–529 (2005). · Zbl 1097.81004 · doi:10.1007/s00500-005-0528-2
[24] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, and I. Volovich, ”Distance dependence of entangled photons in waveguides,” in: Foundations of Probability and Physics 6 (AIP Conf. Proc., Vol. 1424 M. D’Ariano, S.-M. Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, and J.-Å. Larsson, eds.), AIP, Melville, N. Y. (2012), pp. 262–269. · Zbl 1271.81024
[25] A. Yu. Khrennikov, B. Nilsson, S. Nordebo, and I. V. Volovich, Phys. Scripta, 85, 065404 (2012). · Zbl 1278.81175 · doi:10.1088/0031-8949/85/06/065404
[26] V. S. Vladimirov and I. V. Volovich, Sov. Math. Dokl., 29, 521–525 (1984).
[27] V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 59, 317–335 (1984). · Zbl 0552.46023 · doi:10.1007/BF01028510
[28] V. S. Vladimirov and I. V. Volovich, Theor. Math. Phys., 60, 743–765 (1984). · Zbl 0599.46068 · doi:10.1007/BF01018974
[29] A. Yu. Khrennikov, Superanalysis (Math. Its Appl., Vol. 470), Kluwer, Dordrecht (1999).
[30] V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics [in Russian] (Series Sov. East Europ. Math., Vol. 1), World Scientific, Singapore (1994). · Zbl 0812.46076
[31] V. S. Vladimirov, Izv. Math., 60, 67–90 (1996). · Zbl 0916.11059 · doi:10.1070/IM1996v060n01ABEH000062
[32] V. S. Vladimirov, ”p-Adic numbers in mathematical physics,” in: Advanced Mathematics: Computations and Applications, NCC Publ., Novosibirsk (1995), pp. 128–141.
[33] V. S. Vladimirov, Proc. Steklov Inst. Math., 224, 107–114 (1999).
[34] V. S. Vladimirov, Proc. Steklov Inst. Math., 228, 67–80 (2000).
[35] A. Yu. Khrennikov, p-Adic Valued Distributions in Mathematical Physics (Math. Its Appl., Vol. 309), Kluwer, Dordrecht (1994).
[36] A. Yu. Khrennikov, Non-Archimedean Analysis and Its Applications [in Russian], Nauka, Moscow (2003).
[37] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, and I. V. Volovich, p-Adic Numbers Ultrametric Anal. Appl., 1, 1–17 (2009). · Zbl 1187.81004 · doi:10.1134/S2070046609010014
[38] A. E. Allahverdyan, A. Yu. Khrennikov, and Th. M. Nieuwenhuizen, Phys. Rev. A, 72, 032102 (2005); arXiv: quant-ph/0412132v1 (2004). · doi:10.1103/PhysRevA.72.032102
[39] L. De la Peña and A. Cetto, The Quantum Dice: An Introduction to Stochastic Electrodynamics, Kluwer, Dordrecht (1996).
[40] Th. M. Nieuwenhuizen, V. Špička, B. Mehmani, M. J. Aghdami, and A. Yu. Khrennikov, eds., Beyond the Quantum, World Scientific, Singapore (2007).
[41] G. Grössing, J. M. Pascasio, and H. Schwabl, Found. Phys., 41, 1437–1453 (2011); arXiv:0812.3561v4 [quant-ph] (2008). · Zbl 1235.81095 · doi:10.1007/s10701-011-9556-1
[42] Th. Nieuwenhuizen, ”Classical phase space density for relativistic hydrogen atom,” in: Quantum Theory: Reconsideration of Foundations 3 (AIP Conf. Proc., Vol. 810, G. Adenier, A. Yu. Khrennikov, and Th. M. Nieuwenhuizen, eds.), AIP, Melville, N. Y. (2006), pp. 198–210; arXiv:quant-ph/0511144v1 (2005).
[43] W. A. Hofer, Found. Phys., 41, 754–791 (2011); arXiv:1002.3468v5 [quant-ph] (2010). · Zbl 1251.82039 · doi:10.1007/s10701-010-9517-0
[44] H. De Raedt, K. De Raedt, and K. Michielsen, Europhys. Lett., 69, 861–867 (2005). · doi:10.1209/epl/i2004-10443-7
[45] K.-E. Eriksson, ”Reduction of the wave-packet can be understood within quantum mechanics,” in: Foundations of Probability and Physics 6 (AIP Conf. Proc., Vol. 1424, M. D’Ariano, S.-M. Fei, E. Haven, B. Hiesmayr, G. Jaeger, A. Yu. Khrennikov, and J.-?A. Larsson, eds.), AIP, Melville, N. Y. (2012), pp. 72–76. · Zbl 1271.81018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.