×

Passive scalars, three-dimensional volume-preserving maps, and chaos. (English) Zbl 0987.37055

The paper is concerned with volume-preserving three-dimensional mappings of \(\mathbf T^3\), of the general form: \(x'=x+F(y,z)\), \(y'=y +G(x',z)\), \(z'=z+H(x',y')\). As the authors widely and clearly explain, these mappings appear quite naturally in connection with the dynamics of medium-size particles (”passive scalars”) suspended in incompressible flows. Both for this hydrodynamical motivation and for the intrinsic mathematical interest, the authors consider the case of one or two “slow coordinates”, called actions, and two or one “fast coordinates”, called angles; in such an odd-dimensional system they look for the possible existence of KAM-like phenomena. The investigation technique is a combination of numerical study and low order perturbation theory. The main results are the following: in the case of a single action, the behavior is quite similar to the behavior of two-dimensional mappings, like the “standard mapping”; in particular, for slow enough action (\(H\) of order \(\varepsilon\), \(F\) and \(G\) of order one), one finds two-dimensional invariant surfaces (tori), which topologically obstruct the phase space. The authors explicitly conjecture that a KAM-like theorem holds. The typical system with a single action which is studied, is a discretized version of the so-called ABC model. Instead, in the case of two actions (\(F\), \(G\) of order \(\varepsilon\), \(H\) of order one), KAM theory does not appear to apply as well. A new kind of Arnold-like diffusion is found.
The paper is completely self-contained, very clear and illuminating in all the questions it touches.

MSC:

37J40 Perturbations of finite-dimensional Hamiltonian systems, normal forms, small divisors, KAM theory, Arnol’d diffusion
70K60 General perturbation schemes for nonlinear problems in mechanics
76E99 Hydrodynamic stability
82B05 Classical equilibrium statistical mechanics (general)
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
Full Text: DOI

References:

[1] D. J. Tritton,Physical Fluid Dynamics (Van Nostrand, 1977). · Zbl 0383.76001
[2] V. I. Arnold,C. R. Acad. Sei. Paris 261:17 (1965).
[3] M. Hénon,C. R. Acad. Sci. Paris 262:312 (1966); T. Dombre, U. Frish, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward,J. Fluid Mech. 167:353 (1986).
[4] D. Galloway and U. Frisch,J. Fluid Mech., submitted.
[5] H. Aref,J. Fluid Mech. 143:1 (1984); W. L. Chien, H. Rising, and J. M. Ottino,J. Fluid Mech. 170:355 (1986); D. V. Khakhar, H. Rising and J. M. Ottino,J. Fluid. Mech. 172:419 (1986); J. Chaiken, R. Chevray, M. Tabor, and Q. M. Tan,Proc. R. Soc. Lond. A 408:165 (1986);Phys. Fluids 30:687 (1987). · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[6] B. I. Shraiman,Phys. Rev. A 36:261 (1987). · doi:10.1103/PhysRevA.36.261
[7] J. P. Gollub and T. H. Solomon, inProceedings of the Fritz Haber International Symposium, I. Procaccia, ed. (Plenum Press, New York, 1987).
[8] M. V. Berry, inTopics in Nonlinear Dynamics, S. Jorna, ed. (AIP, New York, 1978).
[9] A. J. Lichtenberg and M. A. Lieberman,Regular and Stochastic Motion (Springer, Berlin, 1983). · Zbl 0506.70016
[10] J. M. Greene,J. Math. Phys. 20:1173 (1979); S. J. Shenker and L. P. Kadanoff,J. Stat. Phys. 27:631 (1981); L. P. Kadanoff,Phys. Rev. Lett. 47:1641 (1981). · doi:10.1063/1.524170
[11] V. I. Arnold,Dokl. Akad. Nauk SSSR 156:9 (1964) [Sov. Math. Dokl. 5:581 (1964)]; B. V. Chirikov,Phys. Rep. 52:263 (1979).
[12] F. Heslot, B. Castaing, and A. Libchaber, Transition to turbulence in helium gas, preprint (1987).
[13] Y. S. Sun,Celest. Mech. 30:7 (1983);33:111 (1984). · Zbl 0529.70009 · doi:10.1007/BF01231098
[14] A. Thyagaraja and F. A. Haas,Phys. Fluids 28:1005 (1985). · Zbl 0586.76201 · doi:10.1063/1.865093
[15] L. Glass and R. Perez,Phys. Rev. Lett. 48:1772 (1982); D. Gonzales and O. Piro,Phys. Rev. Lett. 50:871 (1983). · doi:10.1103/PhysRevLett.48.1772
[16] G. D. Birkoff,Dynamical Systems (AMS, New York, 1927); V. I. Arnold and M. B. Sevryuk, inNonlinear Phenomena in Plasma Physics and Hydrodynamics, R. Z. Sagdeev, ed. (MIR, Moscow, 1986).
[17] G. Benettin, L. Galgani, and J.-M. Streclyn,Phys. Rev. A 14:2338 (1976). · doi:10.1103/PhysRevA.14.2338
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.