×

Realization of cascades on surfaces with finitely many moduli of topological conjugacy. (English. Russian original) Zbl 1287.37013

Math. Notes 93, No. 6, 890-905 (2013); translation from Mat. Zametki 93, No. 6, 902-919 (2013).
The paper proves the existence of a surface diffeomorphism, belonging to a particular class, that realizes prescribed dynamical conditions. For a surface \(M^2\), this particular class \(\Psi\) of orientation-preserving diffeomorphisms \(f\in \text{Diff}^r(M^2)\), \(r \geq 5\), consists of those satisfying the following conditions: the nonwandering set \(\Omega_f\) consists of finitely many hyperbolic fixed points; the eigenvalues \(\lambda_p\) and \(\mu_p\) of any saddle point \(p\in \Omega_f\) are positive and satisfy \(\lambda_p^n \mu_p^m\neq 1\) for all \(n,m\in\{ 1,2\}\); if \((W^s_p\setminus p)\cap (W^u_q\setminus q) \neq \emptyset\) for saddle points \(p,q\in \Omega_f\), then \(p\neq q\), and, for any saddle \(r\in \Omega_f\) (including \(p\) and \(q\)), there holds \((W^s_r\setminus r)\cap (W^u_p\setminus p) = \emptyset\) and \((W^s_q\setminus q)\cap (W^u_r\setminus r)=\emptyset\); the wandering set of \(f\) contains finitely many orbits of heteroclinic tangency; and there do not exist saddle points \(p,q\in \Omega_f\) such that all four connected components of the sets \(W^s_p\setminus p\) and \(W^u_q\setminus q\) contain points of one-sided heteroclinic tangency of \(W^s_p\) and \(W^u_q\). The authors of the paper, building on their previous work, develop the notion of the scheme of a diffeomorphism \(f\) in the class \(\Psi\) which is a key to the topological classification of \(f\). The scheme of \(f\) is a set of geometric objects and analytics objects. The geometric objects are related to the topology of the intersection of invariant manifolds of the saddle points. The analytic objects are related to the orbits of one-sided heteroclinic tangency and are given by finitely many moduli of topological conjugacy. The main theorem of the paper is that for every abstract scheme \(S\), there is a surface \(M^2\) of some genus \(g\), and a diffeomorphism \(f_S \in \Psi\) on \(M^2\) whose scheme is equivalent to \(S\).

MSC:

37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
37C29 Homoclinic and heteroclinic orbits for dynamical systems
37D05 Dynamical systems with hyperbolic orbits and sets
Full Text: DOI

References:

[1] А. А. Андpонов, Л. С. Понтpягин, “Гpубые системы”, ДАН СССP, 14:5 (1937), 247 – 250
[2] Е. А. Леонтович, А. Г. Майеp, “О схеме, опpеделяющей топологическую стpуктуpу pазбиения на тpаектоpии”, ДАН СССP, 103:4 (1955), 557 – 560 · Zbl 0064.33903
[3] M. M. Peixoto, “On the classification of flows on 2-manifolds”, Dynamical Systems, Academic Press, New York, 1973, 389 – 419 · Zbl 0299.58011
[4] А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. Часть 1”, Методы качественной теории дифференцальных уравнений, Изд-во Горьковск. ун-та., Горький, 1984, 22 – 38 · Zbl 0805.58013
[5] А. Н. Безденежных, В. З. Гринес, “Динамические свойства и топологическая классификация градиентноподобных диффеоморфизмов на двумерных многообразиях. Часть 2”, Методы качественной теории дифференцальных уравнений, Изд-во Горьковск. ун-та., Горький, 1987, 24 – 31 · Zbl 0805.58014
[6] А. Н. Безденежных, В. З. Гринес, “Реализация градиентно-подобных диффеоморфизмов на двумерных многообразиях”, Дифференциальные и интегральные уравнения, Изд-во Горьковск. ун-та., Горький, 1985, 33 – 37 · Zbl 0803.58007
[7] В. З. Гринес, “Топологическая классификация диффеоморфизмов Морса – Смейла с конечным множеством гетероклинических траекторий на поверхностях”, Матем. заметки, 54:3 (1993), 3 – 17 · Zbl 0814.58025 · doi:10.1007/BF01209552
[8] J. Palis, “A differentiable invariant of topological conjugacies and moduli of stability”, Dynamical Systems, Vol. III, Asteŕisque, 51, Soc. Math. France, Paris, 1978, 335 – 346 · Zbl 0396.58015
[9] W. de Melo, “Moduli of stability of two-dimensional diffeomorphisms”, Topology, 19:1 (1980), 9 – 21 · Zbl 0447.58025 · doi:10.1016/0040-9383(80)90028-2
[10] W. de Melo, J. Palis, “Moduli of stability for diffeomorphisms”, Global Theory of Dynamical Systems, Lecture Notes in Math., 819, Springer-Verlag, Berlin, 1980, 318 – 339 · Zbl 0445.58020 · doi:10.1007/BFb0086996
[11] W. de Melo, S. J. van Strien, “Diffeomorphisms on surfaces with a finite number of moduli”, Ergodic Theory Dynam. Systems, 7:3 (1987), 415 – 462 · Zbl 0609.58023 · doi:10.1017/S0143385700004120
[12] Т. М. Митрякова, О. В. Починка, “О необходимых и достаточных условиях топологической сопряженности диффеоморфизмов поверхностей с конечным числом орбит гетероклинического касания”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 270, МАИК, М., 2010, 198 – 219 · Zbl 1254.37019 · doi:10.1134/S0081543810030156
[13] Т. М. Митрякова, О. В. Починка, “К вопросу о классификации диффеоморфизмов поверхностей с конечным числом модулей топологической сопряженности”, Нелинейная динам., 6:1 (2010), 91 – 105
[14] D. Rolfsen, Knots and Links, Math. Lecture Ser., 7, Publish or Perish, Houston, TX, 1990 · Zbl 0854.57002
[15] C. Bonatti, V. Grines, V. Medvedev, E. Pećou, “Topological classification of gradient-like diffeomorphisms on \(3\)-manifolds”, Topology, 43:2 (2004), 369 – 391 · Zbl 1056.37023 · doi:10.1016/S0040-9383(03)00053-3
[16] Х. Бонатти, В. З. Гринес, О. В. Починка, “Классификация диффеоморфизмов Морса – Смейла с конечным множеством гетероклинических орбит на 3-многообразиях”, Дифференциальные уравнения и динамические системы, Сборник статей, Тр. МИАН, 250, Наука, М., 2005, 5 – 53 · Zbl 1138.37307
[17] Ч. Косневски, Начальный курс алгебраической топологии, Современная математика. Вводные курсы, Мир, М., 1983 · Zbl 0529.55001
[18] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167 – 172 · Zbl 0355.58004 · doi:10.1016/0040-9383(77)90014-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.