×

Classification of cocycles over ergodic automorphisms with values in the Lorentz group and recurrence of cocycles. (English. Russian original) Zbl 1405.37008

Math. Notes 93, No. 6, 850-857 (2013); translation from Mat. Zametki 93, No. 6, 869-877 (2013).
Summary: It is proved that any \(\mathrm{SO}_0(1,d)\)-valued cocycle over an ergodic (probability) measure-preserving automorphism is cohomologous to a cocycle having one of three special forms; the recurrence property of such cocycles is also studied.

MSC:

37A20 Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations
Full Text: DOI

References:

[1] R. J. Zimmer, “Induced and amenable ergodic actions of Lie groups”, Ann. Sci. Ećole Norm. Sup. (4), 11:3 (1978), 407 – 428 · Zbl 0401.22009
[2] C. C. Moore, “Amenable subgroups of semi-simple groups and proximal flows”, Israel J. Math., 34:1-2 (1979), 121 – 138 · Zbl 0431.22014 · doi:10.1007/BF02761829
[3] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Monogr. Math., 81, Birkhaüser Verlag, Basel, 1984 · Zbl 0571.58015
[4] В. И. Оселедец, “Мультипликативная эргодическая теорема. Характеристические показатели Ляпунова динамических систем”, Тр. ММО, 19, Изд-во Моск. ун-та, М., 1968, 179 – 210 · Zbl 0236.93034
[5] L. Arnold, D. C. Nguyen, V. Oseledets, “Jordan normal form for linear cocycles”, Random Oper. Stochastic Equations, 7:4 (1999), 303 – 358 · Zbl 0971.37002 · doi:10.1515/rose.1999.7.4.303
[6] V. I. Oseledets, Classification of \(\mathrm{GL}(2,R)\)-Valued Cocycles of Dynamical Systems, Report 360, Institut fu\"r Dynamische Systeme, Universitaẗ Bremen, Bremen, 1995
[7] Ph. Thieullen, “Ergodic reduction of random products of two-by-two matrices”, J. Anal. Math., 73:1 (1997), 19 – 64 · Zbl 0904.58037 · doi:10.1007/BF02788137
[8] K. Schmidt, “Cocycles of Ergodic Transformation Groups”, Macmillan Lectures in Math., 1, Macmillan Company of India, Delhi, 1977 · Zbl 0421.28017
[9] G. Ochs, V. I. Oseledets, On Recurrent Cocycles and the Non-Existence of Random Fixed Points, Report 382, Institut fu\"r Dynamische Systeme, Universitaẗ Bremen, Bremen, 1996
[10] М. Е. Липатов, “Рекуррентность матричных коциклов”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2010, \? 5, 61 – 64
[11] G. Greschonig, “Recurrence in unipotent groups and ergodic nonabelian group extensions”, Israel J. Math., 147:1 (2005), 245 – 267 · Zbl 1274.37001 · doi:10.1007/BF02785367
[12] L. V. Ahlfors, Mo\"bius Transformations in Several Dimensions, Ordway Professorship Lectures Math., Univ. of Minnesota, Minneapolis, MN, 1981 · Zbl 0517.30001
[13] A. Douady, C. J. Earle, “Conformally natural extension of homeomorphisms of the circle”, Acta Math., 157:1 (1986), 23 – 48 · Zbl 0615.30005 · doi:10.1007/BF02392590
[14] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, 1998 · Zbl 0906.34001
[15] G. Atkinson, “Recurrence of co-cycles and random walks”, J. London Math. Soc. (2), 13:3 (1976), 486 – 488 · Zbl 0342.60049 · doi:10.1112/jlms/s2-13.3.486
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.