×

Attractors in Boolean networks: a tutorial. (English) Zbl 1305.65044

Summary: Boolean networks are a popular class of models for the description of gene-regulatory networks. They model genes as simple binary variables, being either expressed or not expressed. Simulations of Boolean networks can give insights into the dynamics of cellular systems. In particular, stable states and cycles in the networks are thought to correspond to phenotypes. This paper presents approaches to identify attractors in synchronous, asynchronous and probabilistic Boolean networks and gives examples of their usage in the BoolNet R package.

MSC:

62-08 Computational methods for problems pertaining to statistics

Software:

REVEAL; R; BoolNet
Full Text: DOI

References:

[1] Albert R, Othmer H (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 223(1): 1–18 · doi:10.1016/S0022-5193(03)00035-3
[2] Aldana M (2003) Boolean dynamics of networks with scale-free topology. Physica D: Nonlinear Phenomena 185(1): 45–66 · Zbl 1039.94016 · doi:10.1016/S0167-2789(03)00174-X
[3] Bornholdt S (2005) Systems biology. Less is more in modeling large genetic networks. Science 310(5747): 449–451 · doi:10.1126/science.1119959
[4] Bornholdt S (2008) Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 5(Suppl. 1): S85–S94 · doi:10.1098/rsif.2008.0132.focus
[5] Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6(3): e1000702 · doi:10.1371/journal.pcbi.1000702
[6] de Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol 9(1): 67–103 · doi:10.1089/10665270252833208
[7] Dojer N, Gambin A, Mizera A, Wilczyński B, Tiuryn J (2006) Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinform 7: 249 · doi:10.1186/1471-2105-7-249
[8] Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14): e124–e131 · doi:10.1093/bioinformatics/btl210
[9] Garg A, Banerjee D, De Micheli G (2008) Implicit methods for probabilistic modeling of gene regulatory networks. In: Proceedings of the 30th annual international IEEE EMBS conference, pp 4621–4627
[10] Garg A, Di Cara A, Xenarios I, Mendoza L, De Micheli G (2008) Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17): 1917–1925 · doi:10.1093/bioinformatics/btn336
[11] Glass L, Kauffman SA (1973) The logical analysis of continuous, non-linear biochemical networks. J Theor Biol 39(1): 103–129 · doi:10.1016/0022-5193(73)90208-7
[12] Goodwin B (1963) Temporal organization in cells: a dynamic theory of cellular control processes. Academic Press, London
[13] Grzegorczyk M, Husmeier D, Rahnenführer J (2010) Modelling non-stationary dynamic gene regulatory processes with the BGM model. Comput Stat 26(2): 199–218 · Zbl 1304.65036 · doi:10.1007/s00180-010-0201-9
[14] Harvey I, Bossomaier T (1997) Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the forth European conference on artificial life, pp 67–75
[15] Huang S (1999) Gene expression profiling, genetic networks, and cellular states: an integrating concept for tumorigenesis and drug discovery. J Mol Med 77(6): 469–480 · doi:10.1007/s001099900023
[16] Kauffman SA (1969) Metabolic stability and epigensis in randomly constructed genetic nets. J Theor Biol 22(3): 437–467 · doi:10.1016/0022-5193(69)90015-0
[17] Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, Oxford
[18] Kauffman S, Peterson C, Samuelsson B, Troein C (2004) Genetic networks with canalyzing Boolean rules are always stable. PNAS 101(49): 17,102–17,107 · doi:10.1073/pnas.0407783101
[19] Lähdesmäki H, Shmulevich I, Yli-Harja O (2003) On learning gene regulatory networks under the Boolean network model. Mach Learn 52(1–2): 147–167 · Zbl 1039.68162 · doi:10.1023/A:1023905711304
[20] Li F, Long T, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. PNAS 101: 4781–4786 · doi:10.1073/pnas.0305937101
[21] Liang S, Fuhrman S, Somogyi R (1998) REVEAL, a general reverse engineering algorithm for inference of genetic network architectures. Pac Symp Biocomput 3: 18–29
[22] Lynch J (1995) On the threshold of chaos in random Boolean cellular automata. Random Struct Algorithms 6(2–3): 239–260 · Zbl 0819.68082 · doi:10.1002/rsa.3240060212
[23] Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet–an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10): 1378–1380 · doi:10.1093/bioinformatics/btq124
[24] Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JES, Iversen ES, Hartemink AJ, Haase SB (2008) Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature 453(7197): 944–947 · doi:10.1038/nature06955
[25] Sahin O, Fröhlich H, Löbke C, Korf U, Burmester S, Majety M, Mattern J, Schupp I, Chaouiya C, Thieffry D, Poustka A, Wiemann S, Beissbarth T, Arlt D (2009) Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 3(1): 1 · doi:10.1186/1752-0509-3-1
[26] Samuelsson B, Troein C (2003) Superpolynomial growth in the number of attractors in Kauffman networks. Phys Rev Lett 90(9): 098701 · Zbl 1267.82104 · doi:10.1103/PhysRevLett.90.098701
[27] Shmulevich I, Dougherty ER, Kim S, Zhang W (2002) Probabilistic Boolean networks: a rule-based uncertainty model for gene-regulatory networks. Bioinformatics 18(2): 261–274 · doi:10.1093/bioinformatics/18.2.261
[28] Socolar JE, Kauffman SA (2003) Scaling in ordered and critical random Boolean networks. Phys Rev Lett 90(6): 068–702 · doi:10.1103/PhysRevLett.90.068702
[29] Thomas R (1991) Regulatory networks seen as asynchronous automata: a logical description. J Theor Biol 153(1): 1–23 · doi:10.1016/S0022-5193(05)80350-9
[30] Wawra C, Kühl M, Kestler HA (2007) Extended analyses of the Wnt/{\(\beta\)}-catenin pathway: Robustness and oscillatory behaviour. FEBS Lett 581(21): 4043–4048 · doi:10.1016/j.febslet.2007.07.043
[31] Xiao Y, Dougherty ER (2007) The impact of function perturbations in Boolean networks. Bioinformatics 23(10): 1265–1273 · doi:10.1093/bioinformatics/btm093
[32] Zhou D, Müssel C, Lausser L, Hopfensitz M, Kühl M, Kestler HA (2009) Boolean networks for modeling and analysis of gene regulation. Ulmer Informatik-Bericht 2009–2010, Ulm University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.