×

Recurrence rates and hitting-time distributions for random walks on the line. (English) Zbl 1266.60084

Summary: We consider random walks on the line given by a sequence of independent identically distributed jumps belonging to the strict domain of attraction of a stable distribution, and first determine the almost sure exponential divergence rate, as \(\varepsilon \to 0\), of the return time to \((-\varepsilon,\varepsilon)\). We then refine this result by establishing a limit theorem for the hitting-time distributions of \((x-\varepsilon,x+\varepsilon)\) with arbitrary \(x\in \mathbb{R}\).

MSC:

60G50 Sums of independent random variables; random walks
60E07 Infinitely divisible distributions; stable distributions
60F05 Central limit and other weak theorems

References:

[1] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0617.26001
[2] Bressaud, X. and Zweimüller, R. (2001). Non exponential law of entrance times in asymptotically rare events for intermittent maps with infinite invariant measure. Ann. Henri Poincaré 2 501-512. · Zbl 1031.37008 · doi:10.1007/PL00001042
[3] Bretagnolle, J. and Dacunha-Castelle, D. (1968). Théorèmes limites à distance finie pour les marches aléatoires. Ann. Inst. H. Poincaré Sect. B ( N.S. ) 4 25-73. · Zbl 0164.47402
[4] Cheliotis, D. (2006). A note on recurrent random walks. Statist. Probab. Lett. 76 1025-1031. · Zbl 1090.60041 · doi:10.1016/j.spl.2005.12.001
[5] Chung, K.-L. and Erdös, P. (1947). On the lower limit of sums of independent random variables. Ann. of Math. (2) 48 1003-1013. · Zbl 0029.15202 · doi:10.2307/1969391
[6] Dvoretzky, A. and Erdös, P. (1951). Some problems on random walk in space. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability , 1950 353-367. Univ. California Press, Berkeley. · Zbl 0044.14001
[7] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II , 2nd ed. Wiley, New York. · Zbl 0219.60003
[8] Pène, F. and Saussol, B. (2009). Quantitative recurrence in two-dimensional extended processes. Ann. Inst. Henri Poincaré Probab. Stat. 45 1065-1084. · Zbl 1230.37017 · doi:10.1214/08-AIHP195
[9] Stone, C. (1965). A local limit theorem for nonlattice multi-dimensional distribution functions. Ann. Math. Statist. 36 546-551. · Zbl 0135.19204 · doi:10.1214/aoms/1177700165
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.