×

An elliptic parameterisation of the Zamolodchikov model. (English) Zbl 1262.81125

Summary: The Zamolodchikov model describes an exact relativistic factorized scattering theory of straight strings in \((2+1)\)-dimensional space-time. It also defines an integrable 3D lattice model of statistical mechanics and quantum field theory. The three-string S-matrix satisfies the tetrahedron equation which is a 3D analog of the Yang-Baxter equation. Each S-matrix depends on three dihedral angles formed by three intersecting planes, whereas the tetrahedron equation contains five independent spectral parameters, associated with angles of an Euclidean tetrahedron. The vertex weights are given by rather complicated expressions involving square roots of trigonometric function of the spectral parameters, which is quite unusual from the point of view of 2D solvable lattice models. In this paper we consider a particular four-parameter specialisation of the tetrahedron equation when one of its vertices goes to infinity and the tetrahedron itself degenerates into an infinite prism. We show that in this limit all the vertex weights in the tetrahedron equation can be represented as meromorphic functions on an elliptic curve. Moreover we show that a special reduction of the tetrahedron equation in this case leads precisely to an example of the tetrahedral Zamolodchikov algebra, previously constructed by Korepanov. This algebra plays important role for a “layered” construction of the Shastry’s R-matrix and the 2D S-matrix appearing in the problem of the ADS/CFT correspondence for \(N=4\) SUSY Yang-Mills theory in four dimensions. Possible applications of our results in this field are briefly discussed.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81U20 \(S\)-matrix theory, etc. in quantum theory
70H40 Relativistic dynamics for problems in Hamiltonian and Lagrangian mechanics
81T25 Quantum field theory on lattices
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
16T25 Yang-Baxter equations

References:

[1] Zamolodchikov, A. B., Tetrahedra equations and integrable systems in three-dimensional space, Zh. Eksp. Teor. Fiz.. Zh. Eksp. Teor. Fiz., Soviet Phys. JETP, 52, 325-326 (1980), English translation:
[2] Zamolodchikov, A. B., Tetrahedron equations and the relativistic S matrix of straight strings in \((2 + 1)\)-dimensions, Commun. Math. Phys., 79, 489-505 (1981)
[3] Bazhanov, V. V.; Stroganov, Y. G., On commutativity conditions for transfer matrices on multidimensional lattices, Teor. Mat. Fiz.. Teor. Mat. Fiz., Theor. Math. Phys., 52, 1, 685-691 (1982), English translation:
[4] Baxter, R. J., Exactly Solved Models in Statistical Mechanics (1982), Academic: Academic London · Zbl 0538.60093
[5] Baxter, R. J., On Zamolodchikovʼs solution of the tetrahedron equations, Commun. Math. Phys., 88, 185-205 (1983)
[6] Baxter, R. J., The Yang-Baxter equations and the Zamolodchikov model, Physica, 18D, 321-347 (1986) · Zbl 0603.58051
[7] Bazhanov, V. V.; Baxter, R. J., New solvable lattice models in three-dimensions, J. Stat. Phys., 69, 453-485 (1992) · Zbl 0876.17031
[8] Bazhanov, V. V.; Baxter, R. J., Star triangle relation for a three-dimensional model, J. Stat. Phys., 71, 839-864 (1993) · Zbl 0935.82509
[9] Kashaev, R. M.; Mangazeev, V. V.; Stroganov, Y. G., Star-square and tetrahedron equations in the Baxter-Bazhanov model, Int. J. Mod. Phys. A, 8, 8, 1399-1409 (1993) · Zbl 0799.35209
[10] Maillet, J. M.; Nijhoff, F., Integrability for multidimensional lattice models, Phys. Lett. B, 224, 389 (1989) · Zbl 0717.39003
[11] Bazhanov, V. V.; Sergeev, S. M., Zamolodchikovʼs tetrahedron equation and hidden structure of quantum groups, J. Phys. A, 39, 3295-3310 (2006) · Zbl 1091.81047
[12] Bazhanov, V. V.; Mangazeev, V. V.; Sergeev, S. M., Quantum geometry of 3-dimensional lattices, J. Stat. Mech., 0807, P07004 (2008) · Zbl 1459.81053
[13] Baxter, R. J.; Forrester, P. J., Is the Zamolodchikov model critical?, J. Phys. A, 18, 9, 1483-1497 (1985)
[14] Baxter, R. J.; Quispel, G. R.W., Hamiltonian limit of the 3D Zamolodchikov model, J. Stat. Phys., 58, 3-4, 411-430 (1990) · Zbl 1086.82521
[15] Baxter, R. J.; Bazhanov, V. V., Two-layer Zamolodchikov model, (XIIth International Congress of Mathematical Physics (ICMPʼ97) (Brisbane) (1999), Int. Press: Int. Press Cambridge, MA), 15-23 · Zbl 1253.82022
[16] Boos, H. E.; Mangazeev, V. V., Bethe ansatz for the three-layer Zamolodchikov model, J. Phys. A, 32, 28, 5285-5298 (1999) · Zbl 0962.82022
[17] Sergeev, S. M.; Mangazeev, V. V.; Stroganov, Y. G., The vertex formulation of the Bazhanov-Baxter model, J. Stat. Phys., 82, 31-50 (1996) · Zbl 1042.82528
[18] Sergeev, S.; Boos, H.; Mangazeev, V.; Stroganov, Y., Psi vectors for three-dimensional models, Mod. Phys. Lett. A, 11, 491-498 (1996) · Zbl 1020.82532
[19] Korepanov, I. G., Tetrahedral Zamolodchikov algebras corresponding to Baxterʼs \(L\)-operators, Commun. Math. Phys., 154, 1, 85-97 (1993) · Zbl 0773.35059
[20] Hietarinta, J., Labelling schemes for tetrahedron equations and dualities between them, J. Phys. A, 27, 17, 5727-5748 (1994) · Zbl 0838.35121
[21] Shiroishi, M.; Wadati, M., Yang-Baxter equation for the R-matrix of the one-dimensional Hubbard model, J. Phys. Soc. Japan, 64, 1, 57-63 (1995)
[22] Shiroishi, M.; Wadati, M., Decorated star-triangle relations for the free-fermion model and a new solvable bilayer vertex model, J. Phys. Soc. Japan, 64, 8, 2795-2816 (1995)
[23] Essler, F.; Frahm, H.; Gohmann, F.; Klumper, A.; Korepin, V., The One-Dimensional Hubbard Model (2005), Cambridge University Press: Cambridge University Press Cambridge CB2 2RU, UK, The Shastry \(R\)-matrix is discussed in Chapter 12 · Zbl 1107.82014
[24] Shastry, B. S., Exact integrability of the one-dimensional Hubbard model, Phys. Rev. Lett., 56, 2453-2455 (1986) · Zbl 0940.82025
[25] Beisert, N., The analytic Bethe ansatz for a chain with centrally extended \(s u(2 | 2)\) symmetry, J. Stat. Mech., 0701, P01017 (2007) · Zbl 1456.82226
[26] Arutyunov, G.; Frolov, S.; Zamaklar, M., The Zamolodchikov-Faddeev algebra for \(A d S_5 \times S^5\) superstring, JHEP, 0704, 002 (2007)
[27] Martins, M.; Melo, C., The Bethe ansatz approach for factorizable centrally extended S-matrices, Nucl. Phys. B, 785, 246-262 (2007) · Zbl 1150.82304
[28] Mitev, V.; Staudacher, M.; Tsuboi, Z., The tetrahedron Zamolodchikov algebra and the \(A d S_5 \times S^5S\)-matrix · Zbl 1371.82025
[29] Kashaev, R. M.; Mangazeev, V. V.; Stroganov, Y. G., Spatial symmetry, local integrability and tetrahedron equations in the Baxter-Bazhanov model, Int. J. Mod. Phys. A, 8, 587 (1993) · Zbl 0799.35209
[30] Bazhanov, V. V.; Reshetikhin, N. Y., Remarks on the quantum dilogarithm, J. Phys. A, 28, 2217-2226 (1995) · Zbl 0876.17035
[31] Faddeev, L. D.; Kashaev, R. M., Quantum Dilogarithm, Mod. Phys. Lett. A, 9, 427-434 (1994) · Zbl 0866.17010
[32] Sergeev, S. M., Quantum \(2 + 1\) evolution model, J. Phys. A: Math. Gen., 32, 5693-5714 (1999) · Zbl 0962.81023
[33] Baxter, R. J., Partition function of the eight-vertex lattice model, Ann. Physics, 70, 193-228 (1972) · Zbl 0236.60070
[34] Todhunter, I.; Leathem, J., Spherical Trigonometry (1914), Macmillan
[35] Whittaker, E.; Watson, G., A Course of Modern Analysis (1927), Cambridge University Press: Cambridge University Press Cambridge · JFM 53.0180.04
[36] Mangazeev, V.; Sergeev, S.; Stroganov, Y., New solution of vertex type tetrahedron equations, Mod. Phys. Lett. A, 10, 279-288 (1995) · Zbl 1020.82561
[37] Kulish, P. P., Representation of the Zamolodchikov-Faddeev algebra, (Differential Geometry, Lie Groups and Mechanics. Part IV. Differential Geometry, Lie Groups and Mechanics. Part IV, Zap. Nauchn. Sem. LOMI, vol. 109 (1981), Nauka, Leningrad. Otdel.: Nauka, Leningrad. Otdel. Leningrad). (Differential Geometry, Lie Groups and Mechanics. Part IV. Differential Geometry, Lie Groups and Mechanics. Part IV, Zap. Nauchn. Sem. LOMI, vol. 109 (1981), Nauka, Leningrad. Otdel.: Nauka, Leningrad. Otdel. Leningrad), J. Sov. Math., 24, 2, 208-215 (1984), English translation: · Zbl 0532.47032
[38] Lieb, E. H.; Wu, F. Y., Absence of Mott transition in an exact solution of the short-range, one-band model in one dimension, Phys. Rev. Lett., 20, 25, 1445-1448 (1968)
[39] Drinfelʼd, V. G., Quantum groups, (Proceedings of the International Congress of Mathematicians, vols. 1, 2. Proceedings of the International Congress of Mathematicians, vols. 1, 2, Berkeley, Calif., 1986 (1987), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 798-820 · Zbl 0667.16003
[40] Au-Yang, H.; McCoy, B. M.; Perk, J. H.H.; Tang, S.; Yan, M.-L., Commuting transfer matrices in the chiral Potts models: Solutions of star-triangle equations with genus >1, Phys. Lett. A, 123, 219-223 (1987)
[41] Baxter, R. J.; Perk, J. H.H.; Au-Yang, H., New solutions of the star triangle relations for the chiral Potts model, Phys. Lett. A, 128, 138-142 (1988)
[42] Bazhanov, V. V.; Kashaev, R. M.; Mangazeev, V. V.; Stroganov, Y. G., \(Z_N^{\otimes(n - 1)}\) generalization of the chiral Potts model, Commun. Math. Phys., 138, 393-408 (1991) · Zbl 0737.17012
[43] Date, E.; Jimbo, M.; Miki, K.; Miwa, T., Generalized chiral Potts models and minimal cyclic representations of \(U_q(g l(n, C))\), Commun. Math. Phys., 137, 133-148 (1991) · Zbl 0737.17013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.