×

Some remarks on the local class field theory of Serre and Hazewinkel. (English. French summary) Zbl 1362.11096

Summary: We give a new approach for the local class field theory of J.-P. Serre [Bull. Soc. Math. Fr. 89, 105–154 (1961; Zbl 0166.31103)] and Hazewinkel [M. Demazure and P. Gabriel, Algebraic groups. Volume I: Algebraic geometry. Generalities. Commutative groups. With an appendix ‘Local class fields’ by Michiel Hazewinkel. Paris: Masson et Cie (1970; Zbl 0203.23401)]. We also discuss two-dimensional local class field theory in this framework.

MSC:

11S31 Class field theory; \(p\)-adic formal groups
11R37 Class field theory
11S70 \(K\)-theory of local fields

References:

[1] 2 [[S,T]] is compatible with the group structure if µ * M ∼ = pr * 1 M ⊗ pr * 2 M , where µ : Ω 2 [[S,T]] × Ω 2 [[S,T]] → Ω 2 [[S,T]] is the addition map and pr i is the i-th projection for each i = 1, 2. Let C be the category of D-modules of O-rank one on Ω 2 [[S,T]] that are compatible with the group structure and let C be the category of D-modules of O-rank one on Spec K. The categories C and C are k-linear Picard categories under the tensor operation. The endomorphism ring of any object of C or C is equal to k. Let Isom( C) (resp. Isom( C )) be the abelian group of isomorphism classes of objects of C (resp. C ). Since Ω 2 [[S,T]]
[2] and Spec K are the Spec’s of unique factorization domains, line bundles on them can be trivialized. We can associate connection forms to objects of C and C whose underlying line bundles are trivial. Thus Isom( C) (resp. Isom( C )) can identified with a subquotient (as an abelian group) of the space of 1-forms on the k-scheme Ω 2 [[S,T]] (resp. Spec K).
[3] The pullback by ϕ 1 : Spec K → Ω 2 [[S,T]] gives a fully faithful embedding C → C of k-linear Picard categories.
[4] Under the above identification of C , we have Isom( C ) ∼ = (k((T ))/Z) dlog S ⊕ (k((S))/Z) dlog T
[5] ⊕ T −1 Sk[[S]][T −1 ] ⊕ T −1 S −1 k[S −1 , T −1 ] .
[6] The image of Isom( C) in Isom( C ) by the pullback functor by ϕ 1 corre-sponds to the last summand d(T −1 S −1 k[S −1 , T −1 ]) via the isomorphism of Assertion 2.
[7] Proof. -2. The group Isom( C ) is identified with Ω 1,d=0 · Zbl 0931.41017
[8] K/k / dlog K × . A straight-
[9] K/k / dlog K × is equal to the right-hand side of Assertion 2.
[10] The above proof of Assertion 3 also shows that the homomorphism
[11] Isom( C) → Isom( C ) induced by the functor C → C is injective. The result follows from this. BIBLIOGRAPHY
[12] H. Bass (ed.) -Algebraic K-theory. I: Higher K-theories, Lecture Notes in Math., vol. 341, Springer, 1973.
[13] A. Beilinson, S. Bloch, P. Deligne & H. Esnault -“Periods for irregular connections on curves”, preprint 2005.
[14] S. Bloch & H. Esnault -“Gauss-Manin determinants for rank 1 irreg-ular connections on curves”, Math. Ann. 321 (2001), p. 15-87. · Zbl 1040.14006
[15] P. Colmez & J-P. Serre (eds.) -Correspondance Grothendieck-Serre, Documents Mathématiques (Paris), 2, Soc. Math. France, 2001. · Zbl 0986.01019
[16] C. Contou-Carrère -“Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré”, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), p. 743-746. · Zbl 0840.14031
[17] C. E. Contou-Carrère -“Corps de classes local géométrique relatif”, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), p. 481-484. · Zbl 0506.14043
[18] M. Demazure & P. Gabriel -Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris, 1970 (Appendix: M. Hazewinkel, Corps de classes local). · Zbl 0203.23401
[19] I. Fesenko & M. Kurihara (eds.) -Invitation to higher local fields, Geometry & Topology Monographs, vol. 3, Geometry & Topology Pub-lications, Coventry, 2000, Papers from the conference held in Münster, August 29-September 5, 1999. · Zbl 1008.11057
[20] K. Iwasawa -Local class field theory, Oxford Science Publications, The Clarendon Press Oxford Univ. Press, 1986, Oxford Mathematical Mono-graphs. · Zbl 0604.12014
[21] J. S. Milne -Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980. · Zbl 0433.14012
[22] , Arithmetic duality theorems, second ed., BookSurge, LLC, Charleston, SC, 2006. · Zbl 1127.14001
[23] J-P. Serre -“Groupes proalgébriques”, Publ. Math. I.H.É.S. 7 (1960). · Zbl 0097.35901
[24] , “Sur les corps locaux à corps résiduel algébriquement clos”, Bull. Soc. Math. France 89 (1961), p. 105-154. · Zbl 0166.31103
[25] , Algebraic groups and class fields, Graduate Texts in Math., vol. 117, Springer, 1988. · Zbl 0703.14001
[26] BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
[27] , Galois cohomology, English ed., Springer Monographs in Math., Springer, 2002.
[28] T. Suzuki & M. Yoshida -“Fontaine”s property (P m ) at the maximal ramification break”, preprint, arXiv:1012.2935v1, 2010.
[29] , “A refinement of the local class field theory of Serre and Hazewinkel”, in Algebraic number theory and related topics 2010, RIMS Kôkyûroku Bessatsu, B32, Res. Inst. Math. Sci. (RIMS), Kyoto, 2012, p. 163-191. · Zbl 1282.11156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.