×

Two-channel adaptive hybrid control of the air-to-fuel ratio and torque of automobile engines. (English. Russian original) Zbl 1268.93083

Autom. Remote Control 73, No. 11, 1794-1807 (2012); translation from Avtom. Telemekh. 2012, No. 11, 42-59 (2012).
Summary: Combined feedforward/feedback control algorithm for highly nonlinear systems was proposed on the basis of an approximating hybrid model. The designed MIMO controller enables simultaneous control of the air-to-fuel ratio and torque for injector automobile engines. The theoretical results are validated experimentally with physical cars.

MSC:

93C40 Adaptive control/observation systems
93C95 Application models in control theory
93A30 Mathematical modelling of systems (MSC2010)
93C10 Nonlinear systems in control theory
Full Text: DOI

References:

[1] Balluchi, A., Benvenuti, L., di Benedetto, M.D., et al., Automotive Engine Control and Hybrid Systems: Challenges And Opportunities, Proc. IEEE, 2000, vol. 88, no. 7, pp. 888–912. · doi:10.1109/5.871300
[2] Butts, K., Kolmanovsky, I., Sivashankar, N., et al., Hybrid Systems in Automotive Control Applications, in Control Using Logic-Based Switching, Berlin: Springer-Verlag, 1997, pp. 173–189. · Zbl 0875.93420
[3] Derong, L., Javaherian, H., Kovalenko, O., et al., Adaptive Critic Learning Techniques for Engine Torque and Air-Fuel Ratio Control, IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 2008, vol. 38, no. 4, pp. 988–993. · doi:10.1109/TSMCB.2008.922019
[4] Dobner, D.J., A Mathematical Engine Model for Development of Dynamic Engine Control, SAE Paper 800054, 1980.
[5] Bemporad, A., Giorgetti, N., Kolmanovsky, I.V., and Hrovat, D., A Hybrid System Approach to Modeling and Optimal Control of DISC Engines, in Proc. 41st IEEE Conf. Decision and Control, Las Vegas, Nevada, USA, 2002, pp. 1582–1587.
[6] Druzhinina, M., Kolmanovsky, I., and Jing Sun, Hybrid Control of a Gasoline Direct Injection Engine, in Proc. 38th IEEE Conf. Decision and Control, 1999, vol. 3, pp. 2667–2672.
[7] Jankovic, M. and Kolmanovsky, I., Constructive Lyapunov Control Design for Turbocharged Diesel Engines, IEEE Trans. Control Syst. Technol., 2000, vol. 8, no. 2, pp. 288–299. · doi:10.1109/87.826800
[8] Kim, Y.-W., Rizzoni, G., and Utkin, V., Automotive Engine Diagnosis and Control via Nonlinear Estimation, IEEE Control Syst., 1998, vol. 18, no. 5, pp. 84–99.
[9] Rokusho, T. and Yamakita, M., Robust Combined Feedforward and Feedback Control for Start Up Engine Control, in IEEE Int. Conf. Control Appl., 2008, pp. 227–232.
[10] Stotsky, A.A., Automotive Engines: Control, Estimation, Statistical Detection, Berlin: Springer, 2009.
[11] Giryavets, A.K., Teoriya upravleniya avtomobil’nym benzinovym dvigatelem (Theory of Control of Automobile Gasoline Engine), Moscow: Stroiizdat, 1997.
[12] Turin, R. and Geering, H., On-Line Identification of Air-to-Fuel Ratio Dynamics in a Sequentially Injected SI Engine, SAE Technical Paper 930857, 1993.
[13] Dongyun Wang, Kai Wang, and Mingcong Deng, The Application Study of Intelligent PID Algorithm for the Internal Combustion Engine Control System, in Int. Conf. Mechatron. Automat. (ICMA), Aug. 4–7, 2010, pp. 923–927.
[14] Zhao, F.-Q., Lai, M.-C., and Harrington, D.L., A Review of Mixture Preparation and Combustion Control Strategies for Spark-Ignited Direct-Injection Gasoline Engines, SAE J. Engines, 1997, vol. 106, no. 970627, pp. 861–904.
[15] Gerasimov, D.N., Dzhavakherian, Kh., Efimov, D.V., et al., Injector Engine as a Control Plant. I. Engine Scheme and Design of the Mathematical Model, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 5, pp. 135–147.
[16] Gerasimov, D.N., Dzhavakherian, Kh., Efimov, D.V., et al., Injector Engine as a Control Plant. II. Problem of Engine Automatic Control, Izv. Ross. Akad. Nauk, Teor. Sist. Upravlen., 2010, no. 6, pp. 170–181.
[17] Lukanin, V.N., Morozov, K.A., Khachiyan, A.C., et al., Dvigateli vnutrennego sgoraniya. V 3 kn. Kn. 1 Teoriya rabochikh protsessov: Uch. dlya Vuzov (Internal Combustion Engines. in 3 books. Book 1: Theory of Operation), Lukanin, V.N., Ed., Moscow: Vysshaya Shkola, 2005, 2nd revised and completed ed.
[18] Kolchin, A.I., Raschet avtomobil’nykh i traktornykh dvigatelei: ucheb. posobie dlya vuzov (Calculation of the Automobile and Tractor Engines. Textbook), Kolchin, A.I. and Demidov, V.P., Moscow: Vysshaya Shkola, 2003, 3rd revised and completed ed.
[19] Heemels, W.P.M.H., Schutter, B.De, and Bemporad, A., Equivalence of Hybrid Dynamical Models, Automatica, 2001, vol. 37, pp. 1085–1091. · Zbl 0990.93056 · doi:10.1016/S0005-1098(01)00059-0
[20] Bemporad, A., Efficient Conversion of Mixed Logical Dynamical Systems Into an Equivalent Piecewise Affine Form, IEEE Trans. Automat. Control, 2004, vol. 49, no. 5, pp. 832–838. · Zbl 1365.93087 · doi:10.1109/TAC.2004.828315
[21] Takagi, T. and Sugeno, M., Fuzzy Identification of Systems and its Applications to Modeling and Control, IEEE Trans. Syst., Man, Cybern., 1985, vol. 15, pp. 116–132. · Zbl 0576.93021 · doi:10.1109/TSMC.1985.6313399
[22] Ljung, L., System Identification: Theory for the User, Englewood Cliffs: Prentice Hall, 1987. Translated under the title Identifikatsiya sistem. Teoriya dlya pol’zovatelya, Moscow: Nauka, 1991.
[23] Eykhoff, P., System Identification: Parameter and State Estimation, Chichester: Wiley, 1974. Translated under the title Osnovy identifikatsii sistem upravleniya: otsenivanie parametrov i sostoyaniya, Moscow: Mir, 1975.
[24] Liberzon, D., Switching in Systems and Control, Boston: Birkhauser, 2003. · Zbl 1036.93001
[25] Efimov, D.V., Uniting Global and Local Controllers under Acting Disturbances, Automatica, 2006, vol. 42, pp. 489–495. · Zbl 1123.93082 · doi:10.1016/j.automatica.2005.11.003
[26] Krut’ko, P.D., Obratnye zadachi dinamiki v teorii avtomaticheskogo upravleniya. Tsikl lektsii: uch. posobie dlya vuzov (Lectures on the Inverse Problems of Dynamics in the Automatic Control Theory. Textbook), Moscow: Mashinostroenie, 2004.
[27] Kapoor, N., Teel, A.R., and Daoutidis, P., An Anti-Windup Design for Linear Systems with Input Saturation, Automatica, 1998, vol. 34(5), pp. 559–574. · Zbl 1040.93513 · doi:10.1016/S0005-1098(97)00194-5
[28] Sofrony, J., Anti-windup Compensation of Input Constrained Systems: Synthesis Using Riccati Equations, Saarbrücken: VDM Verlag, 2009.
[29] Camacho, E. and Bordons, S., Model Predictive Control, New York: Springer, 2004.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.