×

Geometrically corrected second order analysis of events on a linear network, with applications to ecology and criminology. (English) Zbl 1319.62197

Summary: We study point patterns of events that occur on a network of lines, such as road accidents recorded on a road network. A. Okabe and I. Yamada developed a ‘network \(K\) function’ [Geographical Anal. 33, No. 3, 271–290 (2001), doi:10.1111/j.1538-4632.2001.tb00448.x], analogous to Ripley’s \(K\) function, for analysis of such data. However, values of the network \(K\)-function depend on the network geometry, making interpretation difficult. In this study we propose a correction of the network K-function that intrinsically compensates for the network geometry. This geometrical correction restores many natural and desirable properties of \(K\), including its direct relationship to the pair correlation function. For a completely random point pattern, on any network, the corrected network \(K\)-function is the identity. The corrected estimator \(\hat{K}(r)\) is intrinsically corrected for edge effects and has approximately constant variance. We obtain exact and asymptotic expressions for the bias and variance of \(\hat{K}(r)\) under complete randomness. We extend these results to an ’inhomogeneous’ network \(K\)-function which compensates for a spatially varying intensity of points. We demonstrate applications to ecology (webs of the urban wall spider Oecobius navus) and criminology (street crime in Chicago).

MSC:

62M30 Inference from spatial processes
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
62P12 Applications of statistics to environmental and related topics
62P25 Applications of statistics to social sciences

Software:

spatial; SANET; spatstat
Full Text: DOI

References:

[1] Ang, Statistical methodology for events on a network (2010)
[2] Baddeley, Stochastic geometry: likelihood and computation pp 37– (1999)
[3] Baddeley, Handbook of Spatial Statistics pp 339– (2010) · doi:10.1201/9781420072884-c20
[4] Baddeley, Non- and semiparametric estimation of interaction in inhomogeneous point patterns, Statist. Neerlandica 54 pp 329– (2000) · Zbl 1018.62027 · doi:10.1111/1467-9574.00144
[5] Baddeley, Practical maximum pseudolikelihood for spatial point patterns (with discussion), Aust. N. Z. J. Statist. 42 pp 283– (2000) · Zbl 0981.62078 · doi:10.1111/1467-842X.00128
[6] Baddeley, Spatstat: an R package for analyzing spatial point patterns, J. Statist. Softw 12 pp 1– (2005) · doi:10.18637/jss.v012.i06
[7] Bartlett, A note on spatial pattern, Biometrics 20 pp 891– (1964) · doi:10.2307/2528140
[8] Berman, Approximating point process likelihoods with GLIM, Appl. Stat. 41 pp 31– (1992) · Zbl 0825.62614 · doi:10.2307/2347614
[9] Borruso, Computational science and its applications - ICCSA 2005 pp 126– (2005) · doi:10.1007/11424857_14
[10] Borruso, Network density estimation: a GIS approach for analysing point patterns in a network space, Trans. GIS 12 pp 377– (2008) · doi:10.1111/j.1467-9671.2008.01107.x
[11] Chetwynd, On estimating the reduced second moment measure of a stationary spatial point process, Aust. N. Z. J. Statist. 40 pp 11– (1998) · Zbl 0924.62098 · doi:10.1111/1467-842X.00002
[12] Comber, Using a GIS-based network analysis to determine urban greenspace accessibility for different ethnic and religious groups, Landscape and Urban Planning 86 pp 103– (2008) · doi:10.1016/j.landurbplan.2008.01.002
[13] Daley, An introduction to the theory of point processes (1988) · Zbl 0657.60069
[14] Daley, An introduction to the theory of point processes. Volume II: General theory and structure (2008) · Zbl 1159.60003 · doi:10.1007/978-0-387-49835-5
[15] Deckers, Effects of landscape structure on the invasive spread of black cherry Prunus serotina in an agricultural landscape in Flanders, Belgium, Ecography 28 pp 99– (2005) · doi:10.1111/j.0906-7590.2005.04054.x
[16] Diggle, Statistical analysis of spatial point patterns (2003) · Zbl 1021.62076
[17] Downs, Proceedings of the GIScience Research UK Conference (GISRUK) (2007)
[18] Federer, Geometric measure theory (1969) · Zbl 0176.00801
[19] Kallenberg, Random measures (1983)
[20] Lotwick, Methods for analysing spatial processes of several types of points, J. Roy. Statist. Soc. Ser. B 44 pp 406– (1982) · Zbl 0493.05016
[21] Lu, On the false alarm of planar K-function when analyzing urban crime distributed along streets, Social Sci. Res. 36 pp 611– (2007) · doi:10.1016/j.ssresearch.2006.05.003
[22] Ohser, On the second-order and orientation analysis of planar stationary point processes, Biom. J. 23 pp 523– (1981) · Zbl 0494.60048 · doi:10.1002/bimj.4710230602
[23] Okabe, Spatial tessellations: concepts and applications of Voronoi diagrams (2000) · Zbl 0946.68144 · doi:10.1002/9780470317013
[24] Okabe, A computational method for market area analysis on a network, Geogr. Anal. 28 pp 330– (1996) · doi:10.1111/j.1538-4632.1996.tb00939.x
[25] Okabe, A computational method for estimating the demand of retail stores on a street network and its implementation in GIS, Trans. GIS 5 pp 209– (2001) · doi:10.1111/1467-9671.00078
[26] Okabe, SANET: a toolbox for spatial analysis on a network, Geogr. Anal. 28 pp 57– (2006a) · doi:10.1111/j.0016-7363.2005.00674.x
[27] Okabe, The SANET toolbox: new methods for network spatial analysis, Trans. in GIS 10 pp 535– (2006b) · doi:10.1111/j.1467-9671.2006.01011.x
[28] Okabe, Generalized network Voronoi diagrams: concepts, computational methods, and applications, Int. J. Geogr. Inf. Sci. 22 pp 1– (2008) · doi:10.1080/13658810701587891
[29] Okabe, Uniform network transformation for points pattern analysis on a non-uniform network, J. Geographical Syst 8 pp 25– (2006) · doi:10.1007/s10109-005-0009-2
[30] Okabe, The SAGE Handbook on Spatial Analysis pp 443– (2009) · doi:10.4135/9780857020130.n23
[31] Okabe, A kernel density estimation method for networks, its computational method and a GIS-based tool, Int. J. Geogr. Inf. Sci. 23 pp 7– (2009) · doi:10.1080/13658810802475491
[32] Okabe, The K-function method on a network and its computational implementation, Geogr. Anal. 33 pp 271– (2001) · doi:10.1111/j.1538-4632.2001.tb00448.x
[33] Okabe, Statistical analysis of the distribution of points on a network, Geogr. Anal. 27 pp 152– (1995) · doi:10.1111/j.1538-4632.1995.tb00341.x
[34] Okunuki, Solving the Huff-based competitive location model on a network with link-based demand, Ann. Oper. Res. 111 pp 239– (2003) · Zbl 1013.90083 · doi:10.1023/A:1020962005350
[35] Ripley, The second-order analysis of stationary point processes, J. Appl. Probab. 13 pp 255– (1976) · Zbl 0364.60087 · doi:10.2307/3212829
[36] Ripley, Modelling spatial patterns (with discussion), J. Roy. Statist. Soc. Ser. B 39 pp 172– (1977)
[37] Ripley, Spatial statistics (1981) · doi:10.1002/0471725218
[38] Ripley, Spatial statistics: developments 1980-3, Int. Statist. Rev 52 pp 141– (1984) · Zbl 0558.62083 · doi:10.2307/1403097
[39] Ripley, Statistical inference for spatial processes (1988) · Zbl 0716.62100 · doi:10.1017/CBO9780511624131
[40] Shiode, Analysis of a distribution of point events using the network-based quadrat method, Geogr. Anal. 40 pp 401– (2008) · doi:10.1111/j.0016-7363.2008.00735.x
[41] Shiode, Detection of hierarchical point agglomerations by the network-based variable clumping method, I. J. Geogr. Inf. Sci. 23 pp 75– (2009) · doi:10.1080/13658810801949843
[42] Silverman, Density estimation for statistics and data analysis (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[43] Spooner, Spatial analysis of roadside Acacia populations on a road network using the network K-function, Landscape Ecol 19 pp 491– (2004) · doi:10.1023/B:LAND.0000036114.32418.d4
[44] Stein, An approach to asymptotic inference for spatial point processes, Statist. Sinica 5 pp 221– (1995)
[45] Stoyan, Improving ratio estimators of second order point process characteristics, Scand. J. Statist. 27 pp 641– (2000) · Zbl 0963.62089 · doi:10.1111/1467-9469.00213
[46] Voss, Habitat preferences and spatial dynamics of the urban wall spider: Oecobius annulipes Lucas (1999)
[47] Voss, Habitat preferences of the urban wall spider Oecobius navus (Araneae, Oecobiidae), Aust. J. Entomol. 46 pp 261– (2007) · doi:10.1111/j.1440-6055.2007.00616.x
[48] Wand, Kernel smoothing (1995) · doi:10.1007/978-1-4899-4493-1
[49] Warden, Comparison of Poisson and Bernoulli spatial cluster analyses of pediatric injuries in a fire district, Int. J. Health Geogr 7 pp 51– (2008) · doi:10.1186/1476-072X-7-51
[50] Xie, Kernel density estimation of traffic accidents in a network space, Comp. Environ. Urban Syst 32 (2008) · doi:10.1016/j.compenvurbsys.2008.05.001
[51] Yamada, Comparison of planar and network K-functions in traffic accident analysis, J. Transp. Geogr. 12 pp 149– (2004) · doi:10.1016/j.jtrangeo.2003.10.006
[52] Yamada, Local indicators of network-constrained clusters in spatial point patterns, Geogr. Anal. 39 pp 268– (2007) · doi:10.1111/j.1538-4632.2007.00704.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.