×

Negative dependence in sampling. (English) Zbl 1319.62018

Summary: The strong Rayleigh property is a new and robust negative dependence property that implies negative association; in fact it implies conditional negative association closed under external fields (CNA+). Suppose that \(X_1, \ldots, X_N\) and \(Y_1, \ldots, Y_N\) are two families of 0-1 random variables that satisfy the strong Rayleigh property and let \(Z_i:=X_i + Y_i\). We show that \(\{Z_i\}\) conditioned on \(\sum_i X_iY_i=0\) is also strongly Rayleigh; this turns out to be an easy consequence of the results on preservation of stability of polynomials of J. Borcea and P. Brändén [Invent. Math. 177, No. 3, 541–569 (2009; Zbl 1175.47032)]. This entails that a number of important \(\pi \)ps sampling algorithms, including Sampford sampling and Pareto sampling, are CNA+. As a consequence, statistics based on such samples automatically satisfy a version of the Central Limit Theorem for triangular arrays.

MSC:

62D05 Sampling theory, sample surveys
60F05 Central limit and other weak theorems

Citations:

Zbl 1175.47032
Full Text: DOI

References:

[1] Alexander, A counterexample to a correlation inequality in finite sampling, Ann. Statist. 17 pp 436– (1989) · Zbl 0672.62016 · doi:10.1214/aos/1176347027
[2] Bondesson, Conditional and restricted Pareto sampling: two new methods for unequal probability sampling, Scand. J. Statist. 37 pp 514– (2010) · Zbl 1226.62004 · doi:10.1111/j.1467-9469.2010.00700.x
[3] Bondesson, An extension of Sampford’s method for unequal probability sampling, Scand. J. Statist. 38 pp 377– (2011) · Zbl 1246.62013 · doi:10.1111/j.1467-9469.2010.00707.x
[4] Borcea, The Lee-Yang and Pólya-Schur programs I. Linear operators preserving stability, Invent. Math. 177 pp 521– (2009) · Zbl 1175.47032 · doi:10.1007/s00222-009-0189-3
[5] Borcea, Negative dependence and the geometry of polynomials, J. Amer. Math. Soc. 22 pp 521– (2009) · Zbl 1206.62096 · doi:10.1090/S0894-0347-08-00618-8
[6] Brändén, Polynomials with the half-plane property and matroid theory, Adv. Math. 216 pp 302– (2007) · Zbl 1128.05014 · doi:10.1016/j.aim.2007.05.011
[7] Brewer, Sampling with unequal probabilities (1983) · doi:10.1007/978-1-4684-9407-5
[8] Choe, Homogeneous multivariate polynomials with the half-plane property. Special issue on the Tutte polynomial, Adv. in Appl. Math. 32 pp 88– (2004) · Zbl 1054.05024 · doi:10.1016/S0196-8858(03)00078-2
[9] Dubhasi, Positive influence and negative dependence, Combin. Probab. Comput. 16 pp 29– (2007) · Zbl 1107.62041 · doi:10.1017/S0963548306007772
[10] Dubhashi, Balls and bins: a study in negative dependence, Random Struct. Algor. 13 pp 99– (1998) · Zbl 0964.60503 · doi:10.1002/(SICI)1098-2418(199809)13:2<99::AID-RSA1>3.0.CO;2-M
[11] Feder, Proceedings of the 24th Annual ACM pp 26– (1992)
[12] Grimmett, Percolation (1999) · Zbl 0926.60004 · doi:10.1007/978-3-662-03981-6
[13] Joag-Dev, Negative association of random variables with applications, Ann. Statist. 11 pp 286– (1983) · Zbl 0508.62041 · doi:10.1214/aos/1176346079
[14] Kahn, Negative correlation and log-concavity, Random Struct. Algor. 37 pp 367– (2010) · Zbl 1211.62098 · doi:10.1002/rsa.20292
[15] Patterson, Limit theorems for negatively dependent random variables, Nonlinear Anal. 47 pp 1283– (2001) · Zbl 1042.60503 · doi:10.1016/S0362-546X(01)00265-6
[16] Pemantle, Towards a theory of negative dependence, J. Math. Phys. 41 pp 1371– (2000) · Zbl 1052.62518 · doi:10.1063/1.533200
[17] Rosén, On sampling with probability proportional to size, J. Statist. Plann. Inference. 62 pp 159– (1997) · Zbl 0937.62013 · doi:10.1016/S0378-3758(96)00186-3
[18] Sampford, On sampling without replacement with unequal probabilities of selection, Biometrika 54 pp 499– (1967) · doi:10.1093/biomet/54.3-4.499
[19] Tillé, Sampling Algorithms (2006)
[20] Traat, Sampling design and sample selection through distribution theory, J. Statist. Plann. Inference 123 pp 395– (2004) · Zbl 1045.62008 · doi:10.1016/S0378-3758(03)00150-2
[21] Wagner, Negatively correlated random variables and Mason’s conjecture for independent sets in matroids, Ann. Comb. 12 pp 211– (2008) · Zbl 1145.05003 · doi:10.1007/s00026-008-0348-z
[22] Yuan, A central limit theorem for random fields of negatively associated processes, J. Theoret. Probab. 16 pp 309– (2003) · Zbl 1023.60029 · doi:10.1023/A:1023538824937
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.