×

\(F\)-expansion method and its application for finding new exact solutions to the sine-Gordon and sinh-Gordon equations. (English) Zbl 1288.35154

Summary: In this paper, based on the \(F\)-expansion method and the extended version of \(F\)-expansion method we investigate the exact solutions of the sine-Gordon equation and sinh-Gordon equation, respectively. Firstly, several special transformations are introduced to change the sine-Gordon and sinh-Gordon equations into polynomial nonlinear evolution equations. Then these polynomial nonlinear evolution equations are solved by the \(F\)-expansion method and its extended version. Finally, more new exact Jacobian elliptic function solutions and soliton solutions are constructed explicitly.

MSC:

35C05 Solutions to PDEs in closed form
35L71 Second-order semilinear hyperbolic equations
35A25 Other special methods applied to PDEs
35C08 Soliton solutions
Full Text: DOI

References:

[1] Benney, D. J.; Newell, A. C., The propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133 (1967) · Zbl 0153.30301
[2] Hasegawa, A.; Kodama, Y., Solitons in Optical Communications (1995), Oxford · Zbl 0840.35092
[3] Saito, H.; Ueda, M., Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate, Phys. Rev. Lett., 90, 040403 (2003)
[4] Wang, D. S.; Hu, X. H.; Hu, J.; Liu, W. M., Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity, Phys. Rev. A, 81, 025604 (2010)
[5] Wang, D. S.; Li, X. G., Localized nonlinear matter waves in a BoseCEinstein condensate with spatially inhomogeneous two- and three-body interactions, J. Phys. B At. Mol. Opt. Phys., 45, 105301 (2012)
[6] Gros, M.; Tuan, N. V.; Bertrand, P.; Baumann, G., Damping of solitons in plasmas, Phys. Lett. A, 71, 221-223 (1979)
[7] Ablowitz, M. J.; Herbst, B. M.; Schober, C., On the numerical solution of the sine-Gordon equation: I. Integrable discretizations and homoclinic manifolds, J. Comput. Phys., 126, 299-314 (1996) · Zbl 0866.65064
[8] Ablowitz, M. J.; Segur, H., Soliton and the Inverse Scattering Transformation (1981), PA: SIAM: PA: SIAM Philadelphia · Zbl 0299.35076
[9] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27, 1192 (1971) · Zbl 1168.35423
[10] Miura, M. R., Backlund Transformation (1978), Springer: Springer Berlin
[11] Matveev, V. B.; Salle, M. A., Darboux Transformation and Solitons (1991), Springer: Springer Berlin · Zbl 0744.35045
[12] Belmonte-Beitia, J.; Perez-Garcia, V. M.; Vekslerchik, V.; Torres, P. J., Lie symmetries and solitons in nonlinear systems with spatially inhomogeneous nonlinearities, Phys. Rev. Lett., 98, 064102 (2007)
[13] Wang, D. S.; Hu, X. H.; Liu, W. M., Localized nonlinear matter waves in two-component Bose-Einstein condensates with time- and space-modulated nonlinearities, Phys. Rev. A, 82, 023612 (2010)
[14] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289, 69 (2001) · Zbl 0972.35062
[15] Yan, Z., Extended Jacobian elliptic function algorithm with symbolic computation to construct new doubly-periodic solutions of nonlinear differential equations, Comput. Phys. Commun., 148, 30-42 (2002) · Zbl 1196.33017
[16] Wang, M. L.; Li, X., Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos Soliton. Fract., 24, 1257 (2005) · Zbl 1092.37054
[17] Wang, D. S.; Zhang, H. Q., Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation, Chaos Soliton. Fract., 25, 601-610 (2005) · Zbl 1083.35122
[18] Polyanin, A.; Zaitsev, V. F., Handbook of Nonlinear Partial Differential Equations (2004), FL: CRC: FL: CRC Boca Raton · Zbl 1053.35001
[19] Dodd, R. K.; Bullough, R. K., Polynomial conserved densities for the sine-Gordon equations, Proc. Roy. Soc. London Ser. A., 352, 481 (1977)
[20] Liebbrandt, G., New exact solutions of the classical sine-Gordon equation in 2+1 and 3+1 dimensions, Phys. Rev. Lett., 41, 435 (1978)
[21] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scatting (1991), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0762.35001
[22] Wahlquist, H. D.; Estabrook, F. B., Prolongation structures of nonlinear evolution equations, J. Math. Phys., 16, 1-7 (1975) · Zbl 0298.35012
[23] Clarkson, P. A.; McLeod, J. B.; Ramani, A.; Olver, P. J., Integrability of Klein-Gordon equations, SIAM J. Math. Anal., 17, 798 (1986) · Zbl 0629.35104
[24] Wazwaz, A. M., The variable separated ODE method for a reliable treatment for the Liouville equation and its variants, Commun. Nonlinear Sci. Numer. Simulat., 12, 434-446 (2007) · Zbl 1110.35079
[25] Liu, S. K.; Fu, Z. T.; Liu, S. D., Exact solutions to sine-Gordon-type equations, Phys. Lett. A, 351, 59-63 (2006) · Zbl 1234.35227
[26] Sirendaoreji, S., Jiong, A direct method for solving sine-Gordon type equations, Phys. Lett. A, 298, 133-139 (2002) · Zbl 0995.35056
[27] Wazwaz, A. M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. Math. Comput., 167, 1196-1210 (2005) · Zbl 1082.65585
[28] Fan, E. G.; Zhang, J., Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305, 383 (2002) · Zbl 1005.35063
[29] Wang, D. S.; Yan, Z.; Li, H., Some special types of solutions of a class of the \((N + 1)\)-dimensional nonlinear wave equations, Comput. Math. Appl., 56, 1569-1579 (2008) · Zbl 1155.35444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.