×

Semilocal convergence of a sixth-order method in Banach spaces. (English) Zbl 1264.65085

The paper deals with the approximate solution of a nonlinear equation \(F(x)= 0\), where \(F\) is a mapping of a convex set \(\Omega\) of a Banach space \(X\) in a Banach space \(Y\). It is assumed that \(F\) is Fréchet-differentiable of order 3. To solve the equation numerically we know Newton’s method, Chebyshev’s method, Halley’s method, Newton-likes methods, the super-Halley’s method. For the solution of nonlinear Hammerstein integral equations some fourth-order methods are used. In this paper, a new iterative method of order six is proposed: Suppose \(x_n\) is given. Then denote \[ \begin{aligned}\Gamma_n &= [F'(x_n)]^{-1},\\ u_n &= x_n-\textstyle{{1\over 3}}\Gamma_n F(x_n),\\ K(x_n) &= \Gamma F''(u_n)\Gamma_n F(x_n),\\ z_n &= x_n -\{I+\textstyle{{1\over 2}} K(x_n)[I- K(x_n)]^{01}\} \Gamma_n F(x_n),\\ x_{n+1} &= z_n- [I+ \Gamma_n F''(u_n)(z)_n- x_n)]^{-1} \Gamma_n F(x_n).\end{aligned} \] The semilocal convergence of the iterations is proved. The existence and the uniqueness of the solution of the nonlinear equation can be proved under certain assumptions. An a priori error estimate is given. Two numerical applications (the integral equation of Chandrasekhar and a nonlinear Hammerstein integral equation of second kind) demonstrate the proposed method. In these examples the numerical results are better than those of other known methods.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
65R20 Numerical methods for integral equations
47J25 Iterative procedures involving nonlinear operators
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods I: the Halley method. Computing 44, 169–184 (1990) · Zbl 0701.65043 · doi:10.1007/BF02241866
[2] Candela, V., Marquina, A.: Recurrence relations for rational cubic methods II: the Chebyshev method. Computing 45, 355–367 (1990) · Zbl 0714.65061 · doi:10.1007/BF02238803
[3] Amat, S., Busquier, S., Gutiérrez, J.M.: Third-order iterative methods with applications to Hammerstein equations: a unified approach. J. Comput. Appl. Math. 235, 2936–2943 (2011) · Zbl 1216.65064 · doi:10.1016/j.cam.2010.12.011
[4] Hernández, M.A., Romero, N.: General study of iterative processes of R-order at least three under convergence conditions. J. Optim. Theory Appl. 133, 163–177 (2007) · Zbl 1154.65040 · doi:10.1007/s10957-007-9197-x
[5] Amat, S., Bermúdez, C., Busquier, S., Plaza, S.: On a third-order Newton-type method free of bilinear operators. Numer. Linear Algebra Appl. 17, 639–653 (2010) · Zbl 1240.49046
[6] Wang, X.H., Kou, J.S., Gu, C.Q.: Semilocal convergence of a sixth-order Jarratt method in Banach spaces. Numer. Algorithms 57, 441–456 (2011) · Zbl 1234.65030 · doi:10.1007/s11075-010-9438-1
[7] Argyros, I.K., Cho, Y.J., Hilout, S.: On the semilocal convergence of the Halley method using recurrent functions. J. Appl. Math. Comput. 37, 221–246 (2011) · Zbl 1291.65156 · doi:10.1007/s12190-010-0431-6
[8] Argyros, I.K.: On a class of Newton-like method for methods for solving nonlinear equations. J. Comput. Appl. Math. 228, 115–122 (2009) · Zbl 1168.65349 · doi:10.1016/j.cam.2008.08.042
[9] Parida, P.K., Gupta, D.K.: Recurrence relations for semilocal convergence of a Newton-like method in Banach spaces. J. Math. Anal. Appl. 345, 350–361 (2008) · Zbl 1160.65024 · doi:10.1016/j.jmaa.2008.03.064
[10] Parida, P.K., Gupta, D.K.: Recurrence relations for a Newton-like method in Banach spaces. J. Comput. Appl. Math. 206, 873–887 (2007) · Zbl 1119.47063 · doi:10.1016/j.cam.2006.08.027
[11] Gutiérrez, J.M., Hernández, M.A.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998) · Zbl 0933.65063 · doi:10.1016/S0898-1221(98)00168-0
[12] Wang, X.H., Gu, C.Q., Kou, J.S.: Semilocal convergence of a multipoint fourth-order super-Halley method in Banach spaces. Numer. Algorithms 56, 497–516 (2011) · Zbl 1226.65052 · doi:10.1007/s11075-010-9401-1
[13] Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Salanova, M.A.: The application of an inverse-free Jarratt-type approximation to nonlinear integral equations of Hammerstein-type. Comput. Math. Appl. 36, 9–20 (1998) · Zbl 0932.65060 · doi:10.1016/S0898-1221(98)00137-0
[14] Hernández, M.A., Salanova, M.A.: Sufficient conditions for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces. Southwest J. Pure Appl. Math. 1, 29–40 (1999) · Zbl 0940.65064
[15] Ezquerro, J.A., Hernández, M.A.: Generalized differentiability conditions for Newton’s method. IMA J. Numer. Anal. 22, 187–205 (2002) · Zbl 1006.65051 · doi:10.1093/imanum/22.2.187
[16] Ezquerro, J.A., Hernández, M.A.: Halley’s method for operators with unbounded second derivative. Appl. Numer. Math. 57, 354–360 (2007) · Zbl 1252.65098 · doi:10.1016/j.apnum.2006.05.001
[17] Ezquerro, J.A., Hernández, M.A.: Fourth-order iterations for solving Hammerstein integral equations. Appl. Numer. Math. 59, 1149–1158 (2009) · Zbl 1169.65119 · doi:10.1016/j.apnum.2008.05.005
[18] Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice Hall, Englewood Cliffs (1964) · Zbl 0121.11204
[19] Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009) · Zbl 1170.65038 · doi:10.1007/s10543-009-0226-z
[20] Ezquerro, J.A., Grau-Sánchez, M., Grau, A., Hernández, M.A., Noguera, M., Romero, N.: On iterative methods with accelerated convergence for solving systems of nonlinear equations. J. Optim. Theory Appl. (2011). doi: 10.1007/s10957-011-9870-y · Zbl 1226.90103
[21] Polyanin, A.D., Manzhirov, A.V.: Handbook of Integral Equations. CRC Press, Boca Ratón, FL (1998) · Zbl 0896.45001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.