×

Regionally proximal relation of order \(d\) is an equivalence one for minimal systems and a combinatorial consequence. (English) Zbl 1286.37010

B. Host et al. [Adv. Math. 224, No. 1, 103–129 (2010; Zbl 1203.37022)] characterized inverse limits of nilsystems in topological dynamical systems using a topological analog of the structure theorem for measure-preserving systems. The method involves defining an appropriate generalization of the regionally proximal relation for each \(d\in\mathbb N\) and showing that this is an equivalence relation for any minimal distal system. Here this relation is shown to be an equivalence relation for minimal systems, and a combinatorial result is deduced.

MSC:

37B05 Dynamical systems involving transformations and group actions with special properties (minimality, distality, proximality, expansivity, etc.)
37A99 Ergodic theory

Citations:

Zbl 1203.37022

References:

[1] Auslander, J., Minimal flows and their extensions, (North-Holland Mathematics Studies, vol. 153 (1988), North-Holland: North-Holland Amsterdam) · Zbl 0654.54027
[2] Auslander, J.; Guerin, M., Regional proximality and the prolongation, Forum Math., 9, 761-774 (1997) · Zbl 0896.54024
[3] Austin, T., On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dynam. Systems, 30, 321-338 (2010) · Zbl 1206.37003
[4] P. Dong, S. Donoso, A. Maass, S. Shao, X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems (in press).; P. Dong, S. Donoso, A. Maass, S. Shao, X. Ye, Infinite-step nilsystems, independence and complexity, Ergodic Theory Dynam. Systems (in press). · Zbl 1268.37019
[5] Ellis, R., Lectures on topological dynamics (1969), W. A. Benjamin, Inc.: W. A. Benjamin, Inc. New York · Zbl 0193.51502
[6] Ellis, D.; Ellis, R.; Nerurkar, M., The topological dynamics of semigroup actions, Trans. Amer. Math. Soc., 353, 4, 1279-1320 (2001) · Zbl 0976.54039
[7] Ellis, R.; Gottschalk, W., Homomorphisms of transformation groups, Trans. Amer. Math. Soc., 94, 258-271 (1960) · Zbl 0094.17401
[8] Ellis, R.; Glasner, S.; Shapiro, L., Proximal-isometric flows, (Advances in Math, vol. 17 (1975)), 213-260 · Zbl 0304.54039
[9] Ellis, R.; Keynes, H., A characterization of the equicontinuous structure relation, Trans. Amer. Math. Soc., 161, 171-181 (1971) · Zbl 0233.54023
[10] Furstenberg, H., Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Syst. Theory, 1, 1-49 (1967) · Zbl 0146.28502
[11] Furstenberg, H., Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, J. Anal. Math., 31, 204-256 (1977) · Zbl 0347.28016
[12] Furstenberg, H., Recurrence in ergodic theory and combinatorial number theory, (M. B. Porter Lectures (1981), Princeton University Press: Princeton University Press Princeton, N.J) · Zbl 0459.28023
[13] Furstenberg, H.; Katznelson, Y., Idempotents in compact semigroups and Ramsey theory, Israel J. Math., 68, 257-270 (1989) · Zbl 0714.05059
[14] Glasner, S., Proximal flows, (Lecture Notes in Mathematics, vol. 517 (1976), Springer-Verlag: Springer-Verlag Berlin, New York) · Zbl 0322.54017
[15] Glasner, E., Minimal nil-transformations of class two, Israel J. Math., 81, 31-51 (1993) · Zbl 0780.28009
[16] Glasner, E., Topological ergodic decompositions and applications to products of powers of a minimal transformation, J. Anal. Math., 64, 241-262 (1994) · Zbl 0855.54048
[17] Glasner, E., Structure theory as a tool in topological dynamics, (Descriptive set theory and dynamical systems (Marseille-Luminy, 1996). Descriptive set theory and dynamical systems (Marseille-Luminy, 1996), London Math. Soc. Lecture Note Ser., vol. 277 (2000), Cambridge Univ. Press: Cambridge Univ. Press Cambridge), 173-209 · Zbl 0963.37002
[18] Glasner, E., Topological weak mixing and quasi-Bohr systems, Israel J. Math., 148, 277-304 (2005) · Zbl 1093.54012
[19] Host, B., Ergodic seminorms for commuting transformations and applications, Studia Math., 195, 1, 31-49 (2009) · Zbl 1230.37006
[20] Host, B.; Kra, B., Nonconventional averages and nilmanifolds, Ann. of Math., 161, 398-488 (2005) · Zbl 1077.37002
[21] Host, B.; Kra, B., Parallelepipeds, nilpotent groups, and Gowers norms, Bull. Soc. Math. France, 136, 405-437 (2008) · Zbl 1189.11006
[22] Host, B.; Kra, B., Uniformity norms on \(l^\infty\) and applications, J. Anal. Math., 108, 219-276 (2009) · Zbl 1183.37011
[23] Host, B.; Kra, B.; Maass, A., Nilsequences and a structure theory for topological dynamical systems, Adv. Math., 224, 103-129 (2010) · Zbl 1203.37022
[24] Host, B.; Maass, A., Nilsystèmes d’ordre deux et parallélépipèdes, Bull. Soc. Math. France, 135, 367-405 (2007) · Zbl 1217.37010
[25] W. Huang, S. Shao, X. Ye, Higher order almost automorphy, recurrence sets and the regionally proximal relation, arXiv:1110.6599v1; W. Huang, S. Shao, X. Ye, Higher order almost automorphy, recurrence sets and the regionally proximal relation, arXiv:1110.6599v1
[26] Huang, W.; Ye, X., Dynamical systems disjoint from all minimal systems, Trans. Amer. Math. Soc., 357, 669-694 (2005) · Zbl 1072.37011
[27] McMahon, D. C., Relativized weak disjointness and relatively invariant measures, Trans. Amer. Math. Soc., 236, 225-237 (1978) · Zbl 0388.54030
[28] Tao, T., Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dynam. Systems, 28, 2, 657-688 (2008) · Zbl 1181.37004
[29] Veech, W. A., The equicontinuous structure relation for minimal Abelian transformation groups, Amer. J. Math., 90, 723-732 (1968) · Zbl 0177.51204
[30] Veech, W. A., Topological dynamics, Bull. Amer. Math. Soc., 83, 775-830 (1977) · Zbl 0384.28018
[31] de Vries, J., (Elements of Topological Dynamics. Elements of Topological Dynamics, Mathematics and its Applications, 257 (1993), Kluwer Academic Publishers Group: Kluwer Academic Publishers Group Dordrecht) · Zbl 0783.54035
[32] Ziegler, T., Universal characteristic factors and Furstenberg averages, J. Amer. Math. Soc., 20, 53-97 (2007) · Zbl 1198.37014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.