×

Global existence of solutions of the liquid crystal flow for the Oseen-Frank model in \(\mathbb R^2\). (English) Zbl 1260.35113

The authors consider two problems. First, they show global in time existence of a weak solution to the liquid crystal flow for the Oseen-Frank model. The solution is actually smooth except for finite number of singularities in time-space.
In the second part they consider the Ericksen-Leslie system, i.e. a system of partial differential equations where the Navier-Stokes equations are coupled with the liquid crystal flow. For a general Oseen-Frank model (in two dimensions) they construct global in time weak solutions which are smooth except for a finite number of time instants. For both problems it is shown that the singularities can be characterized by the energy concentration around these points.

MSC:

35Q30 Navier-Stokes equations
76A15 Liquid crystals
35D30 Weak solutions to PDEs
76D07 Stokes and related (Oseen, etc.) flows

References:

[1] Almgren, F. J.; Lieb, E. H., Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Ann. of Math., 128, 483-530 (1988) · Zbl 0673.58013
[2] Amann, H., Quasilinear parabolic systems under nonlinear boundary conditions, Arch. Ration. Mech. Anal., 92, 153-192 (1986) · Zbl 0596.35061
[3] Bauman, P.; Calderer, M.; Liu, C.; Phillips, D., The phase transition between Chiral Nematic and Smectic A. Liquid crystals, Arch. Ration. Mech. Anal., 165, 161-186 (2002) · Zbl 1032.76007
[4] Bethuel, F.; Brezis, H.; Coron, J. M., Relaxed energies for harmonic maps, (Berestycki; Coron; Ekeland, Variational Methods (1990), Birkhäuser: Birkhäuser Basel), 37-52 · Zbl 0793.58011
[5] Caffarelli, L.; Kohn, R.; Nirenberg, L., Partial regularity of suitable weak solutions of Navier-Stokes euqations, Comm. Pure Appl. Math., 35, 771-831 (1982) · Zbl 0509.35067
[6] Chen, Y.; Struwe, M., Existence and partial regular results for the heat flow for harmonic maps, Math. Z., 201, 83-103 (1989) · Zbl 0652.58024
[7] Eells, J.; Sampson, J. H., Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86, 109-160 (1964) · Zbl 0122.40102
[8] Eidel’man, S., Parabolic Systems (1969), North Holland Publishing · Zbl 0181.37403
[9] Ericksen, J., Equilibrium Theory of Liquid Crystals (1976), Academic Press: Academic Press New York · Zbl 0328.76002
[10] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (1983), Princeton Univ. Press · Zbl 0516.49003
[11] Giaquinta, M.; Modica, G.; Soucek, J., The Dirichlet energy of mappings with values into the sphere, Manuscripta Math., 65, 489-507 (1989) · Zbl 0678.49006
[12] Giaquinta, M.; Modica, G.; Soucek, J., Liquid crystals: relaxed energies, dipoles, singular lines and singular points, Ann. Sc. Norm. Super. Pisa, 17, 415-437 (1990) · Zbl 0760.49026
[13] Giaquinta, M.; Modica, G.; Soucek, J., (Cartesian Currents in the Calculus of Variations, Part II, Variational Integrals. Cartesian Currents in the Calculus of Variations, Part II, Variational Integrals, A Series of Modern Surveys in Mathematics, vol. 38 (1998), Springer-Verlag) · Zbl 0914.49002
[14] Giaquinta, M.; Struwe, M., On the partial regularity weak solutions of non-linear parabolic systems, Math. Z., 179, 437-451 (1982) · Zbl 0469.35028
[15] Hardt, R.; Kinderlehrer, D.; Lin, F.-H., Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys., 105, 547-570 (1986) · Zbl 0611.35077
[16] Hardt, R.; Kinderlehrer, D.; Lin, F.-H., Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 297-322 (1988) · Zbl 0657.49018
[17] Hong, M.-C., Partial regularity of weak solutions of the liquid crystal equilibrium system, Indiana Univ. Math. J., 53, 1401-1414 (2004) · Zbl 1129.35384
[18] Hong, M.-C., Existence of infinitely many equilibrium configurations of the liquid crystal system prescribing the same non-constant boundary value, Pacific J. Math., 232, 177-206 (2007) · Zbl 1221.35133
[19] Hong, M.-C., Global existence of solutions of the simplified Ericksen-Leslie system in dimension two, Calc. Var. Parital Differential Equations, 40, 15-36 (2011) · Zbl 1213.35014
[20] Hungerbühler, N., \(m\)-harmonic flow, Ann. Sc. Norm. Super Pisa Cl. Sci., XXIV, 593-631 (1997) · Zbl 0911.58011
[21] Kleman, M., Points, Lines and Walls (1983), John Wiley & Son: John Wiley & Son New York
[22] Ladyzhenskaya, O. A.; Solonnikov, V. A.; Ural’ceva, N. N., (Linear and Quasilinear Equations of Parabolic Type. Linear and Quasilinear Equations of Parabolic Type, Tanslations of Mathematical Monographs, vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence, Rhode Island) · Zbl 0174.15403
[23] Leslie, F., (Brown, Theory of Flow Phenomenon in Liquid Crystal, (Vol 4) (1979), A.P.: A.P. New York), 1-81
[24] Lin, F.-H., Nonlinear theory of defects in nematic liquid crystals: phase transition and flow phenomena, Comm. Pure Appl. Math., 42, 789-814 (1989) · Zbl 0703.35173
[25] Lin, F.-H., A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51, 241-257 (1998) · Zbl 0958.35102
[26] Lin, F.-H.; Lin, J.; Wang, C., Liquid crystal flow in two dimension, Arch. Ration. Mech. Anal., 197, 297-336 (2010) · Zbl 1346.76011
[27] Lin, F.-H.; Liu, C., Nonparabolic dissipative systems modelling the flow of liquid cystals, Comm. Pure Appl. Math., 48, 501-537 (1995) · Zbl 0842.35084
[28] Lin, F.-H.; Liu, C., Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. Anal., 154, 135-156 (2000) · Zbl 0963.35158
[29] Lin, F.-H.; Pan, X.-B., Magnetic field-induced instabilities in liquid crystals, SIAM J. Math. Anal., 38, 1588-1612 (2007) · Zbl 1128.82021
[30] Lin, F.-H.; Wang, C., On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals, Chin. Ann. Math. B, 31, 921-938 (2010) · Zbl 1208.35002
[31] Scheffer, V., Hausdorff measure and the Navier-Stokes equations, Comm. Math. Phys., 61, 97-112 (1977) · Zbl 0357.35071
[32] Solonnikov, V. A., \(L_p\)-estimates for solutions to the initial boundary-value problem for the generalized Stokes system in a bounded domain, J. Math. Sci., 105, 2448-2484 (2001)
[33] Struwe, M., On the evolution of harmonic maps of Riemannian surfaces, Commun. Math. Helv., 60, 558-581 (1985) · Zbl 0595.58013
[34] Struwe, M., The existence of surfaces of constant mean curvature with free boundaries, Acta Math., 160, 19-64 (1988) · Zbl 0646.53005
[35] Tian, G.; Xin, Z., Gradient estimation on Navier-Stokes equations, Comm. Anal. Geom., 7, 221-257 (1999) · Zbl 0939.35139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.