×

The classical exchange algebra of a Green-Schwarz sigma model on supercoset target space with \(\mathbb{Z}_{4m}\) grading. (English) Zbl 1272.81120

Summary: We investigate the classical exchange algebra of the monodromy matrix for a Green-Schwarz sigma model on supercoset target space with \(\mathbb{Z}_{4m}\) grading by using a first-order Hamiltonian formulation and by adding to the Lax connection terms proportional to constraints. This enables us to show that the conserved charges of the theory are in involution in the Poisson bracket sense. Our calculation is based on a general world-sheet metric. Taking a particular case of \(m = 1\) (and a particular choice of supergroup), our results coincide with those of the Green-Schwarz superstring theory in \(AdS_5 \times S^5\) background obtained by M. Magro [J. High Energy Phys. 2009, No. 1, 021, 33 p. (2009; Zbl 1243.81167)]. {
©2011 American Institute of Physics}

MSC:

81T13 Yang-Mills and other gauge theories in quantum field theory
81T20 Quantum field theory on curved space or space-time backgrounds
70H45 Constrained dynamics, Dirac’s theory of constraints
70S05 Lagrangian formalism and Hamiltonian formalism in mechanics of particles and systems
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
17C70 Super structures
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics

Citations:

Zbl 1243.81167
Full Text: DOI

References:

[1] DOI: 10.1016/S0550-3213(98)00570-7 · Zbl 0956.81063 · doi:10.1016/S0550-3213(98)00570-7
[2] DOI: 10.1088/1126-6708/2000/11/024 · Zbl 0989.81093 · doi:10.1088/1126-6708/2000/11/024
[3] DOI: 10.1016/S0550-3213(99)00683-5 · Zbl 0951.81040 · doi:10.1016/S0550-3213(99)00683-5
[4] DOI: 10.1088/1126-6708/1999/02/007 · Zbl 1060.81590 · doi:10.1088/1126-6708/1999/02/007
[5] DOI: 10.1103/PhysRevD.60.064014 · doi:10.1103/PhysRevD.60.064014
[6] DOI: 10.1088/1126-6708/1999/01/001 · doi:10.1088/1126-6708/1999/01/001
[7] DOI: 10.1063/1.1377274 · Zbl 1060.83528 · doi:10.1063/1.1377274
[8] DOI: 10.1103/PhysRevD.63.046002 · doi:10.1103/PhysRevD.63.046002
[9] DOI: 10.1016/S0550-3213(99)00462-9 · Zbl 0957.81054 · doi:10.1016/S0550-3213(99)00462-9
[10] DOI: 10.1103/PhysRevD.71.086007 · doi:10.1103/PhysRevD.71.086007
[11] DOI: 10.1088/1126-6708/2007/06/085 · doi:10.1088/1126-6708/2007/06/085
[12] DOI: 10.1088/1126-6708/2008/09/129 · Zbl 1245.81136 · doi:10.1088/1126-6708/2008/09/129
[13] DOI: 10.1016/j.nuclphysb.2008.09.015 · Zbl 1192.81274 · doi:10.1016/j.nuclphysb.2008.09.015
[14] DOI: 10.1016/j.nuclphysb.2009.10.006 · Zbl 1203.81144 · doi:10.1016/j.nuclphysb.2009.10.006
[15] DOI: 10.1088/1126-6708/2008/10/085 · Zbl 1245.81147 · doi:10.1088/1126-6708/2008/10/085
[16] DOI: 10.1103/PhysRevD.69.046002 · doi:10.1103/PhysRevD.69.046002
[17] DOI: 10.1088/1126-6708/2004/05/024 · doi:10.1088/1126-6708/2004/05/024
[18] DOI: 10.1088/1126-6708/2004/10/060 · doi:10.1088/1126-6708/2004/10/060
[19] DOI: 10.1007/s00220-006-1529-4 · Zbl 1125.81037 · doi:10.1007/s00220-006-1529-4
[20] DOI: 10.1007/s00220-005-1528-x · Zbl 1125.81036 · doi:10.1007/s00220-005-1528-x
[21] DOI: 10.1088/1126-6708/2006/07/014 · doi:10.1088/1126-6708/2006/07/014
[22] DOI: 10.1088/1751-8113/44/12/124002 · Zbl 1270.81191 · doi:10.1088/1751-8113/44/12/124002
[23] DOI: 10.1088/1126-6708/2004/03/037 · doi:10.1088/1126-6708/2004/03/037
[24] DOI: 10.1088/1126-6708/2004/12/055 · doi:10.1088/1126-6708/2004/12/055
[25] DOI: 10.1088/1126-6708/2005/11/015 · doi:10.1088/1126-6708/2005/11/015
[26] DOI: 10.1088/1126-6708/2007/09/100 · doi:10.1088/1126-6708/2007/09/100
[27] DOI: 10.1088/1126-6708/2007/03/045 · doi:10.1088/1126-6708/2007/03/045
[28] DOI: 10.1088/1126-6708/2007/04/040 · doi:10.1088/1126-6708/2007/04/040
[29] DOI: 10.1016/j.nuclphysb.2008.04.029 · Zbl 1189.81184 · doi:10.1016/j.nuclphysb.2008.04.029
[30] DOI: 10.1088/1126-6708/2009/01/021 · Zbl 1243.81167 · doi:10.1088/1126-6708/2009/01/021
[31] DOI: 10.1007/JHEP01(2010)102 · Zbl 1269.81152 · doi:10.1007/JHEP01(2010)102
[32] DOI: 10.1007/s11005-010-0446-9 · Zbl 1214.37047 · doi:10.1007/s11005-010-0446-9
[33] DOI: 10.1007/JHEP03(2011)117 · Zbl 1301.81118 · doi:10.1007/JHEP03(2011)117
[34] DOI: 10.1016/j.physletb.2005.10.090 · Zbl 1247.81420 · doi:10.1016/j.physletb.2005.10.090
[35] DOI: 10.1016/j.nuclphysb.2006.02.027 · Zbl 1214.81250 · doi:10.1016/j.nuclphysb.2006.02.027
[36] DOI: 10.1088/1126-6708/2006/10/046 · doi:10.1088/1126-6708/2006/10/046
[37] DOI: 10.1088/0256-307X/24/12/024 · doi:10.1088/0256-307X/24/12/024
[38] DOI: 10.1142/S0217751X08040378 · Zbl 1159.81390 · doi:10.1142/S0217751X08040378
[39] Frappat L., Dictionary on Lie Algebras and Superalgebras (2000) · Zbl 0965.17001
[40] DOI: 10.1016/j.nuclphysb.2009.06.029 · Zbl 1196.81203 · doi:10.1016/j.nuclphysb.2009.06.029
[41] DOI: 10.1016/0370-2693(85)91075-5 · doi:10.1016/0370-2693(85)91075-5
[42] DOI: 10.1016/0550-3213(86)90365-2 · doi:10.1016/0550-3213(86)90365-2
[43] DOI: 10.1016/0370-2693(86)91289-X · doi:10.1016/0370-2693(86)91289-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.