×

The narrow escape problem – a short review of recent results. (English) Zbl 1259.82083

The mean first passage time or narrow escape time of a particle from a point \(x\) in a bounded domain to the absorbing boundary is understood as being the mean of the solution of a mixed Dirichlet-Neumann boundary value problem for the Poisson equation. The Narrow Escape Problem (NET) consists of calculating this mean. In the literature, contributions on three main classes of this NET problem are known: absorbing patches on a smooth boundary (class1), absorbing patches at the end of a smooth funnel (class2), patches at the end of a long narrow neck attached smoothly or non-smoothly to the reflecting boundary (class3). In the present article, one reviews – shortly – some recent results for domains of these classes, in two as well in as in three dimensions. To this very short paper, references of 41 titles are attached.

MSC:

82C32 Neural nets applied to problems in time-dependent statistical mechanics
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J25 Boundary value problems for second-order elliptic equations
60J65 Brownian motion
58J65 Diffusion processes and stochastic analysis on manifolds
Full Text: DOI

References:

[1] Baron Rayleigh, J.W.S.: The Theory of Sound vol. 2, 2nd edn. Dover, New York (1945) · Zbl 0061.45904
[2] Gardiner, C.W.: Handbook of Stochastic Methods, 2nd edn. Springer, New York (1985) · Zbl 0564.05031
[3] Schuss, Z.: Diffusion and Stochastic Processes: an Analytical Approach. Springer, New York (2010) · Zbl 1202.60005
[4] Fabrikant, V.I.: Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering (Mathematics and Its Applications). Kluwer Academic, Dordrecht (1991) · Zbl 0732.31001
[5] Ward, M.J., Keller, J.B.: Strong localized perturbations of eigenvalue problems. SIAM J. Appl. Math. 53, 770–798 (1993) · Zbl 0778.35081 · doi:10.1137/0153038
[6] Ward, M.J., Henshaw, W.D., Keller, J.B.: Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. Appl. Math. 53, 799–828 (1993) · Zbl 0778.35082 · doi:10.1137/0153039
[7] Ward, M.J., Van de Velde, E.: The onset of thermal runaway in partially insulated or cooled reactors. IMA J. Appl. Math. 48, 53–85 (1992) · Zbl 0796.35060 · doi:10.1093/imamat/48.1.53
[8] Kolokolnikov, T., Titcombe, M., Ward, M.J.: Optimizing the fundamental neumann eigenvalue for the Laplacian in a domain with small traps. Eur. J. Appl. Math. 16, 161–200 (2005) · Zbl 1090.35070 · doi:10.1017/S0956792505006145
[9] Cheviakov, A.F., Ward, M.J., Straube, R.: An asymptotic analysis of the mean first passage time for narrow escape problems. Part II: The sphere. Multiscale Model. Simul. 8(3), 803–835 (2010) · Zbl 1204.35030 · doi:10.1137/100782620
[10] Pillay, S., Ward, M.J., Peirce, A., Kolokolnikov, T.: An asymptotic analysis of the mean first passage time for narrow escape problems. Part I: Two-dimensional domains. Multiscale Model. Simul. 8(3), 836–870 (2010) · Zbl 1203.35023 · doi:10.1137/090752511
[11] Cheviakov, A.F., Reimer, A.S., Ward, M.J.: Mathematical modeling and numerical computation of narrow escape problems. Phys. Rev. E 85, 021131 (2012) · doi:10.1103/PhysRevE.85.021131
[12] Holcman, D., Schuss, Z.: Escape through a small opening: receptor trafficking in a synaptic membrane. J. Stat. Phys. 117(5–6), 975–1014 (2004) · Zbl 1087.82018 · doi:10.1007/s10955-004-5712-8
[13] Singer, Z., Schuss, A., Holcman, D., Eisenberg, B.: Narrow escape I. J. Stat. Phys. 122(3), 437–463 (2006) · Zbl 1149.82335 · doi:10.1007/s10955-005-8026-6
[14] Singer, Z., Schuss, A., Holcman, D.: Narrow escape II. J. Stat. Phys. 122(3), 465–489 (2006) · Zbl 1149.82333 · doi:10.1007/s10955-005-8027-5
[15] Singer, Z., Schuss, A., Holcman, D.: Narrow escape III. J. Stat. Phys. 122(3), 491–509 (2006) · Zbl 1149.82334 · doi:10.1007/s10955-005-8028-4
[16] Grigoriev, I.V., Makhnovskii, Y.A., Berezhkovskii, A.M., Zitserman, V.Y.: Kinetics of escape through a small hole. J. Chem. Phys. 116(22), 9574–9577 (2002) · doi:10.1063/1.1475756
[17] Chevalier, C., Bénichou, O., Meyer, B., Voituriez, R.: First-passage quantities of brownian motion in a bounded domain with multiple targets: a unified approach. J. Phys. A, Math. Theor. 44, 025002 (2011) · Zbl 1207.82020 · doi:10.1088/1751-8113/44/2/025002
[18] Harris, K.M., Stevens, J.K.: Dendritic spines of rat cerebellar purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 12, 4455–4469 (1988)
[19] Bourne, J.N., Harris, K.M.: Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31, 47–67 (2008) · doi:10.1146/annurev.neuro.31.060407.125646
[20] Korkotian, E., Holcman, D., Segal, M.: Dynamic regulation of spine-dendrite coupling in cultured hippocampal neurons. Eur. J. Neurosci. 20(10), 2649–2663 (2004) · doi:10.1111/j.1460-9568.2004.03691.x
[21] Hotulainen, P., Hoogenraad, C.C.: Actin in dendritic spines: connecting dynamics to function. J. Cell Biol. 189(4), 619–629 (2010) · doi:10.1083/jcb.201003008
[22] Newpher, T.M., Ehlers, M.D.: Spine microdomains for postsynaptic signaling and plasticity. Trends Cell Biol. 5, 218–227 (2009) · doi:10.1016/j.tcb.2009.02.004
[23] von Helmholtz, H.L.F.: Crelle, Bd. 7 (1860)
[24] Hille, B.: Ionic Channels of Excitable Membranes, 2nd edn. Sinauer, Sunderland (1992)
[25] Singer, A., Schuss, Z., Holcman, D.: Narrow escape and leakage of brownian particles. Phys. Rev. E 78, 051111 (2008) · doi:10.1103/PhysRevE.78.051111
[26] Yuste, R., Majewska, A., Holthoff, K.: From form to function: calcium compartmentalization in dendritic spines. Nat. Neurosci. 7, 653–659 (2000) · doi:10.1038/76609
[27] Svoboda, K., Tank, D.W., Denk, W.: Direct measurement of coupling between dendritic spines and shafts. Science 272(5262), 716–719 (1996) · doi:10.1126/science.272.5262.716
[28] Biess, A., Korkotian, E., Holcman, D.: Diffusion in a dendritic spine: the role of geometry. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 021922 (2007)
[29] Holcman, D., Kupka, I.: Some questions in computational cellular biology. J. Fixed Point Theory Appl. 7(1), 67–83 (2010). doi: 10.1007/s11784-010-0012-1 · Zbl 1205.35322 · doi:10.1007/s11784-010-0012-1
[30] Borgdorff, A.J., Choquet, D.: Regulation of AMPA receptor lateral movements. Nature 417(6889), 649–653 (2002) · doi:10.1038/nature00780
[31] Choquet, D., Triller, A.: The role of receptor diffusion in the organization of the postsynaptic membrane. Nat. Rev., Neurosci. 4, 251–265 (2003) · doi:10.1038/nrn1077
[32] Holcman, D., Triller, A.: Modeling synaptic dynamics and receptor trafficking. Biophys. J. 91(7), 2405–2415 (2006) · doi:10.1529/biophysj.106.081935
[33] Holcman, D., Korkotian, E., Segal, M.: Calcium dynamics in dendritic spines, modeling and experiments. Cell Calcium 37(5), 467–475 (2005) · doi:10.1016/j.ceca.2005.01.015
[34] Holcman, D., Hoze, N., Schuss, Z.: Narrow escape through a funnel and effective diffusion on a crowded membrane. Phys. Rev. E 84, 021906 (2011) · doi:10.1103/PhysRevE.84.021906
[35] Holcman, D., Schuss, Z.: Brownian needle in dire straits: stochastic motion of a rod in very confined narrow domains. Phys. Rev. E 85, 010103(R) (2012)
[36] Berezhkovskii, A.M., Barzykin, A.V., Zitserman, V.Y.: Escape from cavity through narrow tunnel. J. Chem. Phys. 130(24), 245104 (2009)
[37] Popov, I.Yu.: Extension theory and localization of resonances for domains of trap type. Math. USSR Sb. 71(1), 209–234 (1992) · Zbl 0741.35053 · doi:10.1070/SM1992v071n01ABEH001394
[38] Schuss, Z.: Singular perturbation methods for stochastic differential equations of mathematical physics. SIAM Rev. 22, 116–155 (1980) · Zbl 0436.60045 · doi:10.1137/1022024
[39] Dagdug, L., Berezhkovskii, A.M., Shvartsman, S.Y., Weiss, G.H.: Equilibration in two chambers connected by a capillary. J. Chem. Phys. 119(23), 12473 (2003) · doi:10.1063/1.1626639
[40] Matkowsky, B.J., Schuss, Z., Tier, C.: Uniform expansions of the transition rate in Kramers’ problem. J. Stat. Phys. 35(3–4), 443–456 (1984) · doi:10.1007/BF01014395
[41] Holcman, D., Schuss, Z.: Diffusion laws in dendritic spines. J. Math. Neurosci. 1, 10 (2011). doi: 10.1186/2190-8567-1-10 · Zbl 1259.92008 · doi:10.1186/2190-8567-1-10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.