×

WENO scheme with subcell resolution for computing nonconservative Euler equations with applications to one-dimensional compressible two-medium flows. (English) Zbl 1383.76359

Summary: High order path-conservative schemes have been developed for solving nonconservative hyperbolic systems in [C. Parés, SIAM J. Numer. Anal. 44, No. 1, 300–321 (2006; Zbl 1130.65089); M. Castro et al., Math. Comput. 75, No. 255, 1103–1134 (2006; Zbl 1096.65082); J. Sci. Comput. 39, No. 1, 67–114 (2009; Zbl 1203.65131)]. Recently, it has been observed in [R. Abgrall and S. Karni, J. Comput. Phys. 229, No. 8, 2759–2763 (2010; Zbl 1188.65134)] that this approach may have some computational issues and shortcomings. In this paper, a modification to the high order path-conservative scheme in [M. Castro et al., Math. Comput. 75, No. 255, 1103–1134 (2006; Zbl 1096.65082)] is proposed to improve its computational performance and to overcome some of the shortcomings. This modification is based on the high order finite volume WENO scheme with subcell resolution and it uses an exact Riemann solver to catch the right paths at the discontinuities. An application to one-dimensional compressible two-medium flows of nonconservative or primitive Euler equations is carried out to show the effectiveness of this new approach.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76M28 Particle methods and lattice-gas methods
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

Software:

HE-E1GODF; HLLC
Full Text: DOI

References:

[1] Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi-conservative approach. J. Comput. Phys. 125, 150–160 (1996) · Zbl 0847.76060 · doi:10.1006/jcph.1996.0085
[2] Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169, 594–623 (2001) · Zbl 1033.76029 · doi:10.1006/jcph.2000.6685
[3] Abgrall, R., Karni, S.: A comment on the computation of non-conservative products. J. Comput. Phys. 229, 2759–2763 (2010) · Zbl 1188.65134 · doi:10.1016/j.jcp.2009.12.015
[4] Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277 (1995) · Zbl 0823.65137 · doi:10.1006/jcph.1995.1098
[5] van Brummelen, E.H., Koren, B.: A pressure-invariant conservative Godunov-type method for barotropic two-fluid flows. J. Comput. Phys. 185, 289–308 (2003) · Zbl 1047.76063 · doi:10.1016/S0021-9991(02)00058-X
[6] Castro, M.J., Fernández-Nieto, E.D., Ferreiro, A.M., García-Rodríguez, J.A., Parés, C.: High order extensions of Roe schemes for two-dimensional nonconservative hyperbolic systems. J. Sci. Comput. 39, 67–114 (2009) · Zbl 1203.65131 · doi:10.1007/s10915-008-9250-4
[7] Castro, M.J., Gallardo, J.M., Parés, C.: High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Application to shallow-water systems. Math. Comput. 75, 1103–1134 (2006) · Zbl 1096.65082 · doi:10.1090/S0025-5718-06-01851-5
[8] Castro, M.J., LeFloch, P., Muñoz-Ruiz, M.L., Parés, C.: Why many theories of shock waves are necessary: Convergence error in formally path-consistent schemes. J. Comput. Phys. 227, 8107–8129 (2008) · Zbl 1176.76084 · doi:10.1016/j.jcp.2008.05.012
[9] Chen, T.-J., Cooke, C.H.: On the Riemann problem for liquid or gas-liquid media. Int. J. Numer. Methods Fluids 18, 529–541 (1994) · Zbl 0790.76100 · doi:10.1002/fld.1650180507
[10] Cocchi, J.-P., Saurel, R.: A Riemann problem based method for the resolution of compressible multimaterial flows. J. Comput. Phys. 137, 265–298 (1997) · Zbl 0934.76055 · doi:10.1006/jcph.1997.5768
[11] Cockburn, B., Shu, C.-W.: The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998) · Zbl 0920.65059 · doi:10.1006/jcph.1998.5892
[12] Dal Maso, G., LeFloch, P., Murat, F.: Definition and weak stability of non-conservative products. J. Math. Pure Appl. 74, 483–548 (1995) · Zbl 0853.35068
[13] Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. 48, 70–88 (2011) · Zbl 1220.65110 · doi:10.1007/s10915-010-9400-3
[14] Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method). J. Comput. Phys. 152, 457–492 (1999) · Zbl 0957.76052 · doi:10.1006/jcph.1999.6236
[15] Fedkiw, R.P., Marquina, A., Merriman, B.: An isobaric fix for the overheating problem in multimaterial compressible flows. J. Comput. Phys. 148, 545–578 (1999) · Zbl 0933.76075 · doi:10.1006/jcph.1998.6129
[16] Gottlieb, S., Ketcheson, D.I., Shu, C.-W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38, 251–289 (2009) · Zbl 1203.65135 · doi:10.1007/s10915-008-9239-z
[17] Harten, A.: ENO schemes with subcell resolution. J. Comput. Phys. 83, 148–184 (1989) · Zbl 0696.65078 · doi:10.1016/0021-9991(89)90226-X
[18] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[19] Harten, A., Hyman, J.M.: Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys. 50, 235–269 (1983) · Zbl 0565.65049 · doi:10.1016/0021-9991(83)90066-9
[20] Hou, T.Y., LeFloch, P.: Why nonconservative schemes converge to wrong solutions: error analysis. Math. Comput. 62, 497–530 (1994) · Zbl 0809.65102 · doi:10.1090/S0025-5718-1994-1201068-0
[21] Jiang, G., Peng, D.-P.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000) · Zbl 0957.35014 · doi:10.1137/S106482759732455X
[22] Jiang, G., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[23] Karni, S.: Viscous shock profiles and primitive formulations. SIAM J. Numer. Anal. 29, 1592–1609 (1992) · Zbl 0764.76032 · doi:10.1137/0729092
[24] Karni, S.: Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112, 31–43 (1994) · Zbl 0811.76044 · doi:10.1006/jcph.1994.1080
[25] Larrouturou, B.: How to preserve the mass fractions positivity when computing compressible multi-component flow. J. Comput. Phys. 95, 31–43 (1991) · Zbl 0725.76090 · doi:10.1016/0021-9991(91)90253-H
[26] LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2004)
[27] Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas-water simulation. J. Comput. Phys. 204, 193–221 (2005) · Zbl 1190.76160 · doi:10.1016/j.jcp.2004.10.012
[28] Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part I: a new methodology with applications to 1D gas-gas and gas-water cases. Comput. Fluids 30, 291–314 (2001) · Zbl 1052.76046 · doi:10.1016/S0045-7930(00)00022-0
[29] Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part II: applications to 2D underwater shock refraction. Comput. Fluids 30, 315–337 (2001) · Zbl 1052.76046 · doi:10.1016/S0045-7930(00)00021-9
[30] Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003) · Zbl 1076.76592 · doi:10.1016/S0021-9991(03)00301-2
[31] Liu, W., Yuan, Y., Shu, C.-W.: A conservative modification to the ghost fluid method for compressible multiphase flows. Commun. Comput. Phys. 10, 1238–1248 (2011)
[32] Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994) · Zbl 0811.65076 · doi:10.1006/jcph.1994.1187
[33] Mulder, W., Osher, S., Sethian, J.A.: Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209–228 (1992) · Zbl 0758.76044 · doi:10.1016/0021-9991(92)90229-R
[34] Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003) · Zbl 1026.76001
[35] Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. Anal. 44, 300–321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[36] Qiu, J., Liu, T., Khoo, B.C.: Runge-Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one-dimensional case. J. Comput. Phys. 222, 353–373 (2007) · Zbl 1127.76028 · doi:10.1016/j.jcp.2006.07.023
[37] Qiu, J., Liu, T., Khoo, B.C.: Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the Ghost Fluid Method. Commun. Comput. Phys. 3, 479–504 (2008) · Zbl 1195.76262
[38] Quirk, J.J., Karni, S.: On the dynamics of a shock-bubble interaction. J. Fluid Mech. 318, 129–163 (1996) · Zbl 0877.76046 · doi:10.1017/S0022112096007069
[39] Shi, J., Hu, C., Shu, C.-W.: A technique of treating negative weights in WENO schemes. J. Comput. Phys. 175, 108–127 (2002) · Zbl 0992.65094 · doi:10.1006/jcph.2001.6892
[40] Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.-W., Tadmor, E. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998) (Editor: A. Quarteroni)
[41] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988) · Zbl 0653.65072 · doi:10.1016/0021-9991(88)90177-5
[42] Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes II. J. Comput. Phys. 83, 32–78 (1989) · Zbl 0674.65061 · doi:10.1016/0021-9991(89)90222-2
[43] Smoller, J.: Shock Waves and Reaction-Diffusion Equations, 2nd edn. Springer, New York (1994) · Zbl 0807.35002
[44] Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994) · Zbl 0808.76077 · doi:10.1006/jcph.1994.1155
[45] Tian, B., Toro, E.F., Castro, C.E.: A path-conservative method for a five-equation model of two-phase flow with an HLLC-type Riemann solver. Comput. Fluids 46, 122–132 (2011) · Zbl 1433.76166 · doi:10.1016/j.compfluid.2011.01.038
[46] Tokareva, S.A., Toro, E.F.: HLLC-Type Riemann solver for the Baer-Nunziato equations of compressible two-phase flow. J. Comput. Phys. 229, 3573–3604 (2010) · Zbl 1391.76440 · doi:10.1016/j.jcp.2010.01.016
[47] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3rd edn. Springer, Berlin (2009) · Zbl 1227.76006
[48] Toumi, I.: A weak formulation of Roe’s approximate Riemann solver. J. Comput. Phys. 102, 360–373 (1992) · Zbl 0783.65068 · doi:10.1016/0021-9991(92)90378-C
[49] Wang, C.W., Liu, T.G., Khoo, B.C.: A real-ghost fluid for the simulation of multi-medium compressible flow. SIAM J. Sci. Comput. 28, 278–302 (2006) · Zbl 1114.35119 · doi:10.1137/030601363
[50] Wang, C.W., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge-Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010) · Zbl 1282.76127 · doi:10.1016/j.jcp.2010.08.012
[51] Wang, W., Shu, C.-W., Yee, H.C., Sjógreen, B.: High order finite difference methods with subcell resolution for advection equations with stiff source terms. J. Comput. Phys. 231, 190–214 (2012) · Zbl 1457.65064 · doi:10.1016/j.jcp.2011.08.031
[52] Wang, Z.J., Zhang, L., Liu, Y.: Spectral (finite) volume method for conservation laws on unstructured grids IV: extension to two-dimensional Euler equations. J. Comput. Phys. 194, 716–741 (2004) · Zbl 1039.65072 · doi:10.1016/j.jcp.2003.09.012
[53] Wardlaw, A.: Underwater Explosion Test Cases. IHTR 2069 (1998)
[54] Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010) · Zbl 1203.65155 · doi:10.1007/s10915-010-9345-6
[55] Zhu, J., Qiu, J., Liu, T.G., Khoo, B.C.: RKDG methods with WENO type limiters and conservative interfacial procedure for one-dimensional compressible multi-medium flow simulations. Appl. Numer. Math. 61, 554–580 (2011) · Zbl 1366.76067 · doi:10.1016/j.apnum.2010.12.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.