×

Solution smoothness of ill-posed equations in Hilbert spaces: four concepts and their cross connections. (English) Zbl 1272.47017

In this paper, four smoothness concepts for the exact solution \( x^\dagger \in X \) of an ill-posed problem \( A x = y^0 \in \mathcal{R}(A) \) are considered. Here, \( A: X \to Y \) is an injective bounded linear operator between Hilbert spaces \( X \) and \( Y \), with a non-closed range \( \mathcal{R}(A) \neq \overline{\mathcal{R}(A)} \). Those four smoothness concepts for \( x^\dagger \) are source conditions, approximate source conditions, variational inequalities, and approximate variational inequalities. The main concern of the paper is to consider their connections and to present new results for variational inequalities. In the beginning of the paper, the four concepts are introduced, and for convenience of the reader we recall one of them here. In fact, the solution \( x^\dagger \) satisfies a variational inequality, if \( \beta \| x-x^\dagger \|^2 \leq \| x \|^2 - \| x^\dagger \|^2 + \varphi(\| \psi(A^* A)(x-x^\dagger) \|) \) holds for all \( x \in X \). Here, \( \beta > 0 \) is fixed, and \( \varphi:[0,\infty) \to [0,\infty) \) and \( \psi:[0,\infty) \to [0,\infty) \) are given index functions, i.e., they are continuous, strictly increasing functions that vanish at the origin \(0\), respectively.
For each approach, under very general conditions, convergence rates for \( \| x_\alpha - x^\dagger \| \) are given, where \( x_\alpha \in X \) denotes the minimizer of the Tikhonov functional \( T_\alpha(x) = \| Ax -y^0 \|^2 + \alpha \| x \|^2, \, x \in X \). For each smoothness concept, also conditions for the involved index functions are formulated to ensure the special convergence rate \( \| x_\alpha - x^\dagger \| = \mathcal{O}(\alpha^\mu) \;(\alpha \to 0, \, 0 < \mu \leq 1{}^{ \text{constant}}) \), respectively.
Particular emphasis is put on variational inequalities. For this smoothness concept, some necessary conditions for the constant \( \beta \) and the modifier function \( \varphi \) are presented. In addition, some necessary and sufficient conditions for variational inequalities are given for the special case \( \varphi(t) = at^\kappa \) with \( a > 0 \) and \( \kappa \in (0,1] \). In particular, in the case \( \kappa = 1 \) and \( \beta \leq 1 \), the solution \( x^\dagger \) satisfies a variational inequality if and only if a source condition \( x^\dagger = \psi(A^*A) w \) is satisfied for some \( w \in X\), \(\| w \| \leq a/2 \).
Then new results are presented which clarify the connections between approximate source conditions, variational inequalities, and approximate variational inequalities in Hilbert spaces. In particular, it turns out that these three concepts are equivalent. Fenchel duality is used here as a mathematical tool.

MSC:

47A52 Linear operators and ill-posed problems, regularization
65J20 Numerical solutions of ill-posed problems in abstract spaces; regularization
65F22 Ill-posedness and regularization problems in numerical linear algebra
Full Text: DOI

References:

[1] Engl HW, Mathematics and its Applications (1996)
[2] Hofmann B, Inverse Prob. 25 (11) pp 115013– (2009) · Zbl 1178.47006 · doi:10.1088/0266-5611/25/11/115013
[3] DOI: 10.1088/0266-5611/24/1/015009 · Zbl 1140.47006 · doi:10.1088/0266-5611/24/1/015009
[4] DOI: 10.1002/mma.686 · Zbl 1094.47015 · doi:10.1002/mma.686
[5] DOI: 10.1088/0266-5611/23/3/009 · Zbl 1131.65046 · doi:10.1088/0266-5611/23/3/009
[6] Bredies K, Inverse Probl. 25 (8) pp 085011– (2009) · Zbl 1180.65068 · doi:10.1088/0266-5611/25/8/085011
[7] Flemming J, Numer. Funct. Anal. Optim. 31 (3) pp 254– (2010) · Zbl 1195.47040 · doi:10.1080/01630561003765721
[8] Mathé P, Inverse Prob. 19 (3) pp 789– (2003) · Zbl 1026.65040 · doi:10.1088/0266-5611/19/3/319
[9] DOI: 10.1137/060654530 · Zbl 1137.47063 · doi:10.1137/060654530
[10] DOI: 10.1007/978-3-642-02886-1 · Zbl 1177.90355 · doi:10.1007/978-3-642-02886-1
[11] DOI: 10.1088/0266-5611/20/5/005 · Zbl 1068.65085 · doi:10.1088/0266-5611/20/5/005
[12] Hein T, Inverse Prob. 25 (3) pp 035033– (2009)
[13] Neubauer A, App. Anal. 89 (11) pp 1729– (2010) · Zbl 1214.65031 · doi:10.1080/00036810903517597
[14] Hein T, Int. J. Pure Appl. Math. 43 (4) pp 593– (2008)
[15] DOI: 10.1088/0266-5611/26/3/035007 · Zbl 1204.65060 · doi:10.1088/0266-5611/26/3/035007
[16] Boţ RI, J. Integral Eqns. Appl. 22 (3) pp 369– (2010) · Zbl 1206.47060 · doi:10.1216/JIE-2010-22-3-369
[17] Hofmann B, Appl. Anal. 89 (11) pp 1705– (2010) · Zbl 1207.47065 · doi:10.1080/00036810903208148
[18] Düvelmeyer D, Numer. Funct. Anal. Optim. 28 (111) pp 1245– (2007) · Zbl 1136.47008 · doi:10.1080/01630560701749649
[19] Neubauer A, SIAM J. Numer. Anal. 34 (2) pp 517– (1997) · Zbl 0878.65038 · doi:10.1137/S0036142993253928
[20] DOI: 10.1515/JIIP.2007.004 · Zbl 1123.47014 · doi:10.1515/JIIP.2007.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.