×

Asymptotic behaviour of the energy for electromagnetic systems in the presence of small inhomogeneities. (English) Zbl 1247.78004

Summary: We consider solutions to time-harmonic and time-dependent Maxwell systems with piecewise constant coefficients with a finite number of small inhomogeneities in \(\mathbb R^3\). In the time-harmonic case and for such solutions, we derive the asymptotic expansions due to the presence of small inhomogeneities embedded in the entire space. Further, we analyse the behaviour of the electromagnetic energy caused by the presence of these inhomogeneities. For the general time-dependent case, we show that the local electromagnetic energy, trapped in the total collection of these well-separated inhomogeneities, decays towards zero as the shape parameter decreases to zero or as time increases.

MSC:

78A25 Electromagnetic theory (general)
35B20 Perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
78M35 Asymptotic analysis in optics and electromagnetic theory
35Q61 Maxwell equations
Full Text: DOI

References:

[1] DOI: 10.1137/050640655 · Zbl 1132.78308 · doi:10.1137/050640655
[2] DOI: 10.1051/m2an:2000101 · Zbl 0971.78004 · doi:10.1051/m2an:2000101
[3] DOI: 10.1016/S0021-7824(01)01217-X · Zbl 1042.78002 · doi:10.1016/S0021-7824(01)01217-X
[4] DOI: 10.1016/S0021-7824(03)00033-3 · Zbl 1033.78006 · doi:10.1016/S0021-7824(03)00033-3
[5] DOI: 10.1016/j.crma.2008.01.019 · Zbl 1153.35076 · doi:10.1016/j.crma.2008.01.019
[6] Cole JD, Perturbation Methods in Applied Mathematics (1968)
[7] Il’in AM, Matching of Asymptotic Expansions of Solutions of Boundary Value Problems, Translations of Mathematical Monographs 102 (1992)
[8] DOI: 10.1090/S0002-9947-1949-0033922-9 · doi:10.1090/S0002-9947-1949-0033922-9
[9] DOI: 10.1088/0266-5611/14/3/011 · Zbl 0916.35132 · doi:10.1088/0266-5611/14/3/011
[10] DOI: 10.1007/BF00281494 · Zbl 0684.35087 · doi:10.1007/BF00281494
[11] DOI: 10.1142/9789812831323 · doi:10.1142/9789812831323
[12] DOI: 10.1103/PhysRevA.39.2005 · doi:10.1103/PhysRevA.39.2005
[13] DOI: 10.1088/0143-0807/13/3/003 · doi:10.1088/0143-0807/13/3/003
[14] M. Lockwood, C.J. Davis,The correct application of Poynting’s theorem to the time-dependent magnetosphere: Reply to Heikkila, Ann. Geophys. 17 (1999), pp. 178–181
[15] DOI: 10.1002/cpa.3160280204 · Zbl 0304.35064 · doi:10.1002/cpa.3160280204
[16] DOI: 10.1215/S0012-7094-79-04641-6 · Zbl 0427.35043 · doi:10.1215/S0012-7094-79-04641-6
[17] DOI: 10.1016/0898-1221(94)00224-9 · Zbl 0819.35135 · doi:10.1016/0898-1221(94)00224-9
[18] DOI: 10.1002/mma.473 · Zbl 1054.35103 · doi:10.1002/mma.473
[19] Cazenave T, SMAI, Math. Appl. (1990)
[20] DOI: 10.1137/S0036141094271259 · Zbl 0860.35129 · doi:10.1137/S0036141094271259
[21] Pazy A, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences 44 (1978) · Zbl 0516.47023
[22] Kong JA, Electromagnetic Wave Theory (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.