×

Some arithmetic identities involving divisor functions. (English) Zbl 1318.11001

Summary: For a positive integer \(n\), let \(\sigma(n):= \displaystyle\sum_{d \in \mathbb{N},\ d\mid n} d\). The explicit evaluation of such arithmetic sums as
\[ \sum_{\substack{(a,b,c) \in \mathbb N^3,\\ a+2b+4c=n}} \sigma(a)\sigma(b) \sigma(c)\quad\text{ and } \sum_{\substack{ (a,b) \in \mathbb N^2,\\ a+2b=n}} a \sigma(a)\sigma(b) \]
is carried out for all positive integers \(n\).

MSC:

11A25 Arithmetic functions; related numbers; inversion formulas
11F27 Theta series; Weil representation; theta correspondences

References:

[1] B. C. Berndt, Number Theory in the Spirit of Ramanujan , Amer. Math. Soc., Providence, Rhode Island, 2006. · Zbl 1117.11001
[2] N. Cheng and K. S. Williams, Evaluation of some convolution sums involving the sum of divisor functions, Yokohama Math. J. 52 (2005), 39-57. · Zbl 1094.11004
[3] {J. G. Huard, Z. M. Ou, B. K. Spearman and K. S. Williams, Elementary evaluation of certain convolution sums involving divisor functions , Number Theory for the Millenium II, edited by M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand and W. Philipp , A K Peters, Natick, Massachusetts, USA, 2002, pp. 229-274.} · Zbl 1062.11005
[4] D. B. Lahiri, On Ramanujan’s function \(\tau(n)\) and the divisor function \(\sigma_k(n)\)-I , Bull. Calcutta Math. Soc. 38 (1946), 193-206. · Zbl 0060.10203
[5] S. Ramanujan, On certain arithmetical functions , Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
[6] S. Ramanujan, Collected Papers , AMS Chelsea Publishing, Providence, Rhode Island, USA, 2000. · Zbl 1110.11001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.