×

Dirac operators on cobordisms: degenerations and surgery. (English) Zbl 1275.58015

Summary: We investigate the Dolbeault operator on a pair of pants, i.e., an elementary cobordism between a circle and the disjoint union of two circles. This operator induces a canonical selfadjoint Dirac operator \( D_t\) on each regular level set \( C_t\) of a fixed Morse function defining this cobordism. We show that as we approach the critical level set \( C_0\) from above and from below these operators converge in the gap topology to (different) selfadjoint operators \( D_\pm \) that we describe explicitly. We also relate the Atiyah-Patodi-Singer index of the Dolbeault operator on the cobordism to the spectral flows of the operators \( D_t\) on the complement of \( C_0\) and the Kashiwara-Wall index of a triplet of finite dimensional Lagrangian spaces canonically determined by \( C_0\).

MSC:

58J20 Index theory and related fixed-point theorems on manifolds
58J28 Eta-invariants, Chern-Simons invariants
58J30 Spectral flows
58J32 Boundary value problems on manifolds
53B20 Local Riemannian geometry
35B25 Singular perturbations in context of PDEs

References:

[1] V. I. Arnol\(^{\prime}\)d, The complex Lagrangian Grassmannian, Funktsional. Anal. i Prilozhen. 34 (2000), no. 3, 63 – 65 (Russian); English transl., Funct. Anal. Appl. 34 (2000), no. 3, 208 – 210. · Zbl 0996.53051 · doi:10.1007/BF02482410
[2] M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43 – 69. , https://doi.org/10.1017/S0305004100049410 M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. II, Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 3, 405 – 432. , https://doi.org/10.1017/S0305004100051872 M. F. Atiyah, V. K. Patodi, and I. M. Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976), no. 1, 71 – 99. · Zbl 0325.58015 · doi:10.1017/S0305004100052105
[3] Nicole Berline, Ezra Getzler, and Michèle Vergne, Heat kernels and Dirac operators, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 298, Springer-Verlag, Berlin, 1992. · Zbl 0744.58001
[4] Sylvain E. Cappell, Ronnie Lee, and Edward Y. Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), no. 2, 121 – 186. · Zbl 0805.58022 · doi:10.1002/cpa.3160470202
[5] D.F. Cibotaru: Localization formulæ in odd \( K\)-theory, arXiv: 0901.2563.
[6] R. E. Edwards, Functional analysis, Dover Publications, Inc., New York, 1995. Theory and applications; Corrected reprint of the 1965 original.
[7] Gerald B. Folland, Real analysis, 2nd ed., Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Modern techniques and their applications; A Wiley-Interscience Publication. · Zbl 0924.28001
[8] Peter B. Gilkey, On the index of geometrical operators for Riemannian manifolds with boundary, Adv. Math. 102 (1993), no. 2, 129 – 183. · Zbl 0798.58071 · doi:10.1006/aima.1993.1063
[9] Gerd Grubb, Heat operator trace expansions and index for general Atiyah-Patodi-Singer boundary problems, Comm. Partial Differential Equations 17 (1992), no. 11-12, 2031 – 2077. · Zbl 0773.58025 · doi:10.1080/03605309208820913
[10] Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. · Zbl 0836.47009
[11] Paul Kirk and Matthias Lesch, The \?-invariant, Maslov index, and spectral flow for Dirac-type operators on manifolds with boundary, Forum Math. 16 (2004), no. 4, 553 – 629. · Zbl 1082.58021 · doi:10.1515/form.2004.027
[12] Peter Kronheimer and Tomasz Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007. · Zbl 1158.57002
[13] Liviu I. Nicolaescu, Lectures on the geometry of manifolds, World Scientific Publishing Co., Inc., River Edge, NJ, 1996. · Zbl 0883.53001
[14] Liviu I. Nicolaescu, Schubert calculus on the Grassmannian of Hermitian Lagrangian spaces, Adv. Math. 224 (2010), no. 6, 2361 – 2434. · Zbl 1200.37022 · doi:10.1016/j.aim.2010.02.003
[15] John Oprea, Differential geometry and its applications, 2nd ed., Classroom Resource Materials Series, Mathematical Association of America, Washington, DC, 2007. · Zbl 1153.53001
[16] R. Seeley and I. M. Singer, Extending \overline\partial to singular Riemann surfaces, J. Geom. Phys. 5 (1988), no. 1, 121 – 136. · Zbl 0692.30038 · doi:10.1016/0393-0440(88)90015-0
[17] E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. · JFM 53.0180.04
[18] Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980.
[19] C. T. C. Wall, Non-additivity of the signature, Invent. Math. 7 (1969), 269 – 274. · Zbl 0176.21501 · doi:10.1007/BF01404310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.