×

Convergence of frozen Gaussian approximation for high-frequency wave propagation. (English) Zbl 1387.35400

Summary: The frozen Gaussian approximation provides a highly efficient computational method for high-frequency wave propagation. The derivation of the method is based on asymptotic analysis. In this paper, for general linear strictly hyperbolic systems, we establish the rigorous convergence result for frozen Gaussian approximation. As a byproduct, higher-order frozen Gaussian approximation is developed.

MSC:

35L40 First-order hyperbolic systems
35B40 Asymptotic behavior of solutions to PDEs
35B45 A priori estimates in context of PDEs

References:

[1] Bougacha, Gaussian beams summation for the wave equation in a convex domain, Commun. Math. Sci. 7 (4) pp 973– (2009) · Zbl 1190.35136 · doi:10.4310/CMS.2009.v7.n4.a9
[2] Červený, Computation of wave fields in inhomogeneous media-Gaussian beam approach, Geophys. J. Roy. Astr. Soc. 70 pp 109– (1982) · Zbl 0518.73020 · doi:10.1111/j.1365-246X.1982.tb06394.x
[3] Engquist, Computational high frequency wave propagation, Acta Numer. 12 pp 181– (2003) · Zbl 1049.65098 · doi:10.1017/S0962492902000119
[4] Herman, A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations, Chem. Phys. 91 (1) pp 27– (1984) · doi:10.1016/0301-0104(84)80039-7
[5] Hill, Gaussian beam migration, Geophys. 55 (11) pp 1416– (1990) · doi:10.1190/1.1442788
[6] Kay, Integral expressions for the semiclassical time-dependent propagator, J. Chem. Phys. 100 (6) pp 4377– (1994) · doi:10.1063/1.466320
[7] Kay, The Herman-Kluk approximation: derivation and semiclassical corrections, Chem. Phys. 322 (1-2) pp 3– (2006) · doi:10.1016/j.chemphys.2005.06.019
[8] Liu, Recovery of high frequency wave fields for the acoustic wave equation, Multiscale Model. Simul. 8 (2) pp 428– (2009/10) · Zbl 1213.35284 · doi:10.1137/090761598
[9] Liu, Recovery of high frequency wave fields from phase space-based measurements, Multiscale Model. Simul. 8 (2) pp 622– (2009/10) · Zbl 1221.35031 · doi:10.1137/090756909
[10] Liu , H. Runborg , O. Tanushev , N. M. 2010 http://arxiv.org/abs/1008
[11] Lu , J. Yang , X. 2010 http://arxiv.org/abs/1010
[12] Lu, Frozen Gaussian approximation for high frequency wave propagation, Commun. Math. Sci. 9 (3) pp 663– (2011) · Zbl 1272.65075 · doi:10.4310/CMS.2011.v9.n3.a2
[13] Martinez, An introduction to semiclassical and microlocal analysis (2002) · Zbl 0994.35003 · doi:10.1007/978-1-4757-4495-8
[14] Motamed, Taylor expansion and discretization errors in Gaussian beam superposition, Wave Motion 47 (7) pp 421– (2010) · Zbl 1231.78006 · doi:10.1016/j.wavemoti.2010.02.001
[15] Popov, A new method of computation of wave fields using Gaussian beams, Wave Motion 4 (1) pp 85– (1982) · Zbl 0521.70021 · doi:10.1016/0165-2125(82)90016-6
[16] Qian, Fast multiscale Gaussian wavepacket transforms and multiscale Gaussian beams for the wave equation, Multiscale Model. Simul. 8 (5) pp 1803– (2010) · Zbl 1223.65076 · doi:10.1137/100787313
[17] Ralston, Studies in partial differential equations (1982)
[18] Robert, On the Herman-Kluk semiclassical approximation, Rev. Math. Phys. 22 (10) pp 1123– (2010) · Zbl 1206.35212 · doi:10.1142/S0129055X1000417X
[19] Rousse , V. Swart , T. L 2 2007 http://arxiv.org/abs/0710
[20] Runborg, Mathematical models and numerical methods for high frequency waves, Commun. Comput. Phys. 2 (5) pp 827– (2007) · Zbl 1164.78300
[21] Swart, A mathematical justification for the Herman-Kluk propagator, Comm. Math. Phys. 286 (2) pp 725– (2009) · Zbl 1170.81026 · doi:10.1007/s00220-008-0681-4
[22] Taylor, Princeton Mathematical Series, 34, in: Pseudodifferential operators (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.