×

\(L^2\)-signatures, homology localization, and amenable groups. (English) Zbl 1256.57018

This paper introduces a variant of the derived series, and uses it to show that if \(G\) is an amenable group and \(\phi:G\to\Gamma\) is a homomorphism with kernel in Strebel’s homologically defined class \(D(R)\), where \(R\) is a prime field or \(\mathbb{Z}\leq{R}\leq\mathbb{Q}\), then the \(L^2\)-Betti numbers and \(L^2\)-signature defects of closed manifolds \(M\) over \(G\) are invariants of \(R\Gamma\)-cobordism. The bulk of the paper is algebraic, reviewing various notions of localization (Bousfield, Vogel, Cohn), defining the \(R\Gamma\)-local derived series, and establishing its key properties of functoriality and injectivity. (Earlier work in this direction assumed that \(G\) is PTFA, i.e., solvable, with torsion free abelian sections, and used the Harvey derived series, which is based on Ore localization and is not functorial in the sense considered here.) The main result is applied to give an analogue of a theorem of Chang and Weinberger, on \((4k-1)\)-manifolds (with \(k>1\)) which are simple homotopy equivalent and tangentially equivalent but not homology cobordant, and to give a similar result for 3-manifolds homology equivalent to a generalized quaternionic spherical space form.

MSC:

57N65 Algebraic topology of manifolds
20J99 Connections of group theory with homological algebra and category theory
57R67 Surgery obstructions, Wall groups
57R90 Other types of cobordism

References:

[1] Bousfield, Lecture Notes in Mathematics, 418, in: Localization in group theory and homotopy theory, and related topics (Sympos., Battelle Seattle Res. Center, Seattle, Wash., 1974) pp 22– (1974) · doi:10.1007/BFb0070639
[2] Bousfield, The localization of spaces with respect to homology, Topology 14 pp 133– (1975) · Zbl 0309.55013 · doi:10.1016/0040-9383(75)90023-3
[3] Cappell, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 pp 277– (1974) · Zbl 0279.57011 · doi:10.2307/1970901
[4] Cha, Injectivity theorems and algebraic closures of groups with coefficients, Proc. London Math. Soc. (3) 96 pp 227– (2008) · Zbl 1197.20045 · doi:10.1112/plms/pdm033
[5] Cha, Topological minimal genus and L2-signatures, Algebr. Geom. Topol. 8 pp 885– (2008) · Zbl 1162.57016 · doi:10.2140/agt.2008.8.885
[6] Cha, Structure of the string link concordance group and Hirzebruch-type invariants, Indiana Univ. Math. J. 58 pp 891– (2009) · Zbl 1183.57003 · doi:10.1512/iumj.2009.58.3520
[7] Cha, Link concordance, homology cobordism, and Hirzebruch-type defects from iterated p-covers, J. Eur. Math. Soc. (JEMS) 12 pp 555– (2010) · Zbl 1195.57012 · doi:10.4171/JEMS/209
[8] Chang, On invariants of Hirzebruch and Cheeger-Gromov, Geom. Topol. 7 pp 311– (2003) · Zbl 1037.57028 · doi:10.2140/gt.2003.7.311
[9] Cochran, Homology and derived series of groups, Geom. Topol. 9 pp 2159– (2005) · Zbl 1138.20043 · doi:10.2140/gt.2005.9.2159
[10] Cochran, Homology and derived series of groups. II. Dwyer’s theorem, Geom. Topol. 12 pp 199– (2008) · Zbl 1163.20031 · doi:10.2140/gt.2008.12.199
[11] Cochran, Homology and derived p-series of groups, J. Lond. Math. Soc. (2) 78 pp 677– (2008) · Zbl 1159.57004 · doi:10.1112/jlms/jdn046
[12] Cochran, Homological stability of series of groups, Pacific J. Math. 246 pp 31– (2010) · Zbl 1229.20050 · doi:10.2140/pjm.2010.246.31
[13] Cochran, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 pp 1419– (2009) · Zbl 1175.57004 · doi:10.2140/gt.2009.13.1419
[14] Cochran, Knot concordance, Whitney towers and L2-signatures, Ann. of Math. (2) 157 pp 433– (2003) · Zbl 1044.57001 · doi:10.4007/annals.2003.157.433
[15] Cochran, Structure in the classical knot concordance group, Comment. Math. Helv. 79 pp 105– (2004) · Zbl 1061.57008 · doi:10.1007/s00014-001-0793-6
[16] Cohn, London Mathematical Society Monographs, 2, in: Free rings and their relations (1971) · Zbl 0232.16003
[17] Farjoun, Bousfield localization as an algebraic closure of groups, Israel J. Math. 66 pp 143– (1989) · Zbl 0684.55011 · doi:10.1007/BF02765889
[18] Friedl, Link concordance, boundary link concordance and eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 pp 437– (2005) · Zbl 1075.57003 · doi:10.1017/S0305004105008455
[19] Harvey, Homology cobordism invariants and the Cochran-Orr-Teichner filtration of the link concordance group, Geom. Topol. 12 pp 387– (2008) · Zbl 1157.57006 · doi:10.2140/gt.2008.12.387
[20] Heck , P. Knot concordance in three manifolds 2009
[21] Le Dimet, Cobordisme d’enlacements de disques, Mém. Soc. Math. France (N.S.) 32 pp 92– (1988)
[22] Levine, Link concordance and algebraic closure. II, Invent. Math. 96 pp 571– (1989) · Zbl 0692.57010 · doi:10.1007/BF01393697
[23] Levine, Link invariants via the eta invariant, Comment. Math. Helv. 69 pp 82– (1994) · Zbl 0831.57012 · doi:10.1007/BF02564475
[24] Lück, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 44, in: L2-invariants: theory and applications to geometry and K-theory (2002) · doi:10.1007/978-3-662-04687-6
[25] Milnor, Groups which act on Sn without fixed points, Amer. J. Math. 79 pp 623– (1957) · Zbl 0078.16304 · doi:10.2307/2372566
[26] Paterson, Mathematical Surveys and Monographs, 29, in: Amenability (1988) · doi:10.1090/surv/029
[27] Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 pp 302– (1974) · Zbl 0288.20066
[28] Vogel , P. 1978 http://www.maths.ed.ac.uk/aar/papers/vogelnantes.pdf
[29] Vogel, On the obstruction group in homology surgery, Inst. Hautes Études Sci. Publ. Math 55 pp 165– (1982) · Zbl 0491.57015 · doi:10.1007/BF02698696
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.