×

Comparison theorems for the position-dependent mass Schrödinger equation. (English) Zbl 1238.81099

Summary: The following comparison rules for the discrete spectrum of the position-dependent mass (PDM) Schrödinger equation are established. (i) If a constant mass \(m_0\) and a PDM \(m(x)\) are ordered everywhere, that is either, \(m_0 \leq m(x)\) or \(m_0 \geq m(x)\), then the corresponding eigenvalues of the constant-mass Hamiltonian and of the PDM Hamiltonian with the same potential and the BenDaniel-Duke ambiguity parameters are ordered. (ii) The corresponding eigenvalues of PDM Hamiltonians with the different sets of ambiguity parameters are ordered if \(\nabla^2(1/m(x))\) has a definite sign. We prove these statements by using the Hellmann-Feynman theorem and offer examples of their application.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis

References:

[1] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures, Editions de Physique, Les Ulis, 1988.
[2] K. Young, “Position-dependent effective mass for inhomogeneous semiconductors,” Physical Review B, vol. 39, no. 18, pp. 13434-13441, 1989. · doi:10.1103/PhysRevB.39.13434
[3] G. L. Herling and M. L. Rustgi, “Spatially dependent effective mass and optical properties in finite parabolic quantum wells,” Journal of Applied Physics, vol. 71, no. 2, pp. 796-799, 1992. · doi:10.1063/1.351401
[4] A. J. Peter and K. Navaneethakrishnan, “Effects of position-dependent effective mass and dielectric function of a hydrogenic donor in a quantum dot,” Physica E, vol. 40, no. 8, pp. 2747-2751, 2008. · doi:10.1016/j.physe.2007.12.025
[5] R. Khordad, “Effects of position-dependent effective mass of a hydrogenic donor impurity in a ridge quantum wire,” Physica E, vol. 42, no. 5, pp. 1503-1508, 2010. · doi:10.1016/j.physe.2009.12.006
[6] L. Dekar, L. Chetouani, and T. F. Hammann, “Wave function for smooth potential and mass step,” Physical Review A, vol. 59, no. 1, pp. 107-112, 1999.
[7] A. D. Alhaidari, “Solutions of the nonrelativistic wave equation with position-dependent effective mass,” Physical Review A, vol. 66, article 042116, 7 pages, 2002.
[8] S.-H. Dong and M. Lozada-Cassou, “Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential,” Physics Letters, Section A, vol. 337, no. 4-6, pp. 313-320, 2005. · Zbl 1136.81353 · doi:10.1016/j.physleta.2005.02.008
[9] B. Bagchi, A. Banerjee, C. Quesne, and V. M. Tkachuk, “Deformed shape invariance and exactly solvable Hamiltonians with position-dependent effective mass,” Journal of Physics A: Mathematical and General, vol. 38, no. 13, pp. 2929-2945, 2005. · Zbl 1084.81072 · doi:10.1088/0305-4470/38/13/008
[10] T. Tanaka, “N-fold supersymmetry in quantum systems with position-dependent mass,” Journal of Physics A: Mathematical and General, vol. 39, no. 1, pp. 219-234, 2006. · Zbl 1092.81031 · doi:10.1088/0305-4470/39/1/016
[11] A. Ganguly and L. M. Nieto, “Shape-invariant quantum Hamiltonian with position-dependent effective mass through second-order supersymmetry,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 26, pp. 7265-7281, 2007. · Zbl 1116.81026 · doi:10.1088/1751-8113/40/26/012
[12] B. Midya, B. Roy, and R. Roychoudhury, “Position dependent mass Schrödinger equation and isospectral potentials: intertwining operator approach,” Journal of Mathematical Physics, vol. 51, no. 2, article 022109, 2010. · Zbl 1309.81082 · doi:10.1063/1.3300414
[13] C. Tezcan and R. Sever, “Exact solutions of the Schrödinger equation with position-dependent effective mass via general point canonical transformation,” Journal of Mathematical Chemistry, vol. 42, no. 3, pp. 387-395, 2007. · Zbl 1132.81354 · doi:10.1007/s10910-006-9109-6
[14] R. A. Kraenkel and M. Senthilvelan, “On the solutions of the position-dependent effective mass Schrödinger equation of a nonlinear oscillator related with the isotonic oscillator,” Journal of Physics A: Mathematical and Theoretical, vol. 42, no. 41, article 415303, p. 10, 2009. · Zbl 1179.81057 · doi:10.1088/1751-8113/42/41/415303
[15] R. Ko\cc and S. Sayın, “Remarks on the solution of the position-dependent mass Schrödinger equation,” Journal of Physics A: Mathematical and Theoretical, vol. 43, no. 45, article 455203, 2010. · Zbl 1204.81055 · doi:10.1088/1751-8113/43/45/455203
[16] C. Quesne and V. M. Tkachuk, “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem,” Journal of Physics A: Mathematical and General, vol. 37, no. 14, pp. 4267-4281, 2004. · Zbl 1063.81070 · doi:10.1088/0305-4470/37/14/006
[17] O. von Roos, “Position-dependent effective masses in semiconductor theory,” Physical Review B, vol. 27, no. 12, pp. 7547-7552, 1983. · doi:10.1103/PhysRevB.27.7547
[18] D. J. BenDaniel and C. B. Duke, “Space-charge effects on electron tunneling,” Physical Review, vol. 152, no. 2, pp. 683-692, 1966. · doi:10.1103/PhysRev.152.683
[19] T. L. Li and K. J. Kuhn, “Band-offset ratio dependence on the effective-mass Hamiltonian based on a modified profile of the GaAs-AlxGa1-xAs quantum well,” Physical Review B, vol. 47, no. 19, pp. 12760-12770, 1993. · doi:10.1103/PhysRevB.47.12760
[20] T. Gora and F. Williams, “Theory of electronic states and transport in graded mixed semiconductors,” Physical Review, vol. 177, no. 3, pp. 1179-1182, 1969. · doi:10.1103/PhysRev.177.1179
[21] R. A. Morrow and K. R. Brownstein, “Model effective-mass Hamiltonians for abrupt heterojunctions and the associated wave-function-matching conditions,” Physical Review B, vol. 30, no. 2, pp. 678-680, 1984. · doi:10.1103/PhysRevB.30.678
[22] O. Mustafa and S. H. Mazharimousavi, “A singular position-dependent mass particle in an infinite potential well,” Physics Letters A, vol. 373, no. 3, pp. 325-327, 2009. · Zbl 1227.81166 · doi:10.1016/j.physleta.2008.12.001
[23] A. de Souza Dutra and C. A. S. Almeida, “Exact solvability of potentials with spatially dependent effective masses,” Physics Letters, Section A, vol. 275, no. 1-2, pp. 25-30, 2000. · Zbl 1115.81396 · doi:10.1016/S0375-9601(00)00533-8
[24] F. S. A. Cavalcante, R. N. Costa Filho, J. Ribeiro Filho, C. A. S. de Almeida, and V. N. Freire, “Form of the quantum kinetic-energy operator with spatially varying effective mass,” Physical Review B, vol. 55, no. 3, pp. 1326-1328, 1997.
[25] V. A. Smagley, M. Mojahedi, and M. Osinski, “Operator ordering of a position-dependent effective-mass Hamiltonian in semiconductor superlattices and quantum wells,” in Proceedings of the SPIE, P. Blood, M. Osinski, and Y. Arakawa, Eds., vol. 4646, pp. 258-269, Academic, San Jose, Calif, USA, 2002.
[26] R. L. Hall, “Refining the comparison theorem of quantum mechanics,” Journal of Physics A: Mathematical and General, vol. 25, pp. 4459-4469, 1992. · Zbl 0764.34059 · doi:10.1088/0305-4470/25/16/021
[27] R. L. Hall and Q. D. Katatbeh, “Generalized comparison theorems in quantum mechanics,” Journal of Physics A: Mathematical and General, vol. 35, no. 41, pp. 8727-8742, 2002. · Zbl 1044.81038 · doi:10.1088/0305-4470/35/41/307
[28] C. Semay, “General comparison theorem for eigenvalues of a certain class of Hamiltonians,” Physical Review A, vol. 83, no. 2, article 024101, 2 pages, 2011.
[29] R. P. Feynman, “Forces in molecules,” Physical Review, vol. 56, no. 4, pp. 340-343, 1939. · Zbl 0022.42302 · doi:10.1103/PhysRev.56.340
[30] H. Hellmann, Einf\Huhrung in die Quantenchemie, Franz Deuticke, Leipzig, Germany, 1937.
[31] R. L. Hall, “Relativistic comparison theorems,” Physical Review A, vol. 81, no. 5, article 052101, 2010. · doi:10.1103/PhysRevA.81.052101
[32] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, New York, NY, USA, 1978. · Zbl 0401.47001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.