×

Solutions of unified fractional Schrödinger equations. (English) Zbl 1234.35296

Summary: We obtain the solution of a unified fractional Schrödinger equation. The solution is derived by the application of the Laplace and Fourier transforms in closed form in terms of the Mittag-Leffler function. The result obtained here is quite general in nature and capable of yielding a very large number of results (new and known) hitherto scattered in the literature. Most of results obtained are in a form suitable for numerical computation.

MSC:

35R11 Fractional partial differential equations
35Q41 Time-dependent Schrödinger equations and Dirac equations
33E12 Mittag-Leffler functions and generalizations
Full Text: DOI

References:

[1] R. Hilfer, Ed., Applications of Fractional Calculus in Physics, World Scientific, River Edge, NJ, USA, 2000. · Zbl 0998.26002
[2] H. Beyer and S. Kempfle, “Definition of physical consistent damping laws with fractional derivatives,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 75, pp. 623-635, 1995. · Zbl 0865.70014 · doi:10.1002/zamm.19950750820
[3] S. Kempfle and L. Gaul, “Global solutions of fractional linear differential equations,” ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 76, no. 2, pp. 571-572, 1996. · Zbl 0900.73195 · doi:10.1002/zamm.19960761215
[4] W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134-144, 1989. · Zbl 0692.45004 · doi:10.1063/1.528578
[5] L. Debnath, “Fractional integrals and fractional differential equations in fluid mechanics,” Fractional Calculus and Applied Analysis, vol. 6, pp. 119-155, 2003. · Zbl 1076.35095
[6] L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, Birkhäuser, Basel, Switzerland, 2nd edition, 2005. · Zbl 1069.35001
[7] L. Debnath, “Recent applications of fractional calculus to science and engineering,” International Journal of Mathematics and Mathematical Sciences, vol. 2003, no. 54, pp. 3413-3442, 2003. · Zbl 1036.26004 · doi:10.1155/S0161171203301486
[8] N. Laskin, “Fractals and quantum mechanics,” Chaos, vol. 10, no. 4, pp. 780-790, 2000. · Zbl 1071.81513 · doi:10.1063/1.1050284
[9] N. Laskin, “Fractional quantum mechanics and Levy path integrals,” Physics Letters, Section A, vol. 268, no. 4-6, pp. 298-305, 2000. · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[10] N. Laskin, “Fractional Schrödinger equation,” Physical Review E, vol. 66, no. 5, Article ID 056108, 7 pages, 2002. · doi:10.1103/PhysRevE.66.056108
[11] M. Naber, “Distributed order fractional sub-diffusion,” Fractals, vol. 12, no. 1, pp. 23-32, 2004. · Zbl 1083.60066 · doi:10.1142/S0218348X04002410
[12] M. Bhatti, “Fractional Schrödinger wave equation and fractional uncertainty principle,” International Journal of Contemporary Mathematical Sciences, vol. 2, pp. 943-952, 2007. · Zbl 1146.35082
[13] V. B. L. Chaurasia and J. Singh, “Application of sumudu transform in schödinger equation occurring in quantum mechanics,” Applied Mathematical Sciences, vol. 4, no. 57, pp. 2843-2850, 2010. · Zbl 1218.33005
[14] R. K. Saxena, R. Saxena, and S. L. Kalla, “Computational solution of a fractional generalization of the Schrödinger equation occurring in quantum mechanics,” Applied Mathematics and Computation, vol. 216, no. 5, pp. 1412-1417, 2010. · Zbl 1190.65157 · doi:10.1016/j.amc.2010.02.041
[15] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0789.26002
[16] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[17] M. Caputo, Elasticitá e Dissipazione, Zanichelli, Bologna, Italy, 1969.
[18] R. Metzler and J. Klafter, “The random walk’s guide to anomalous diffusion: a fractional dynamics approach,” Physics Report, vol. 339, no. 1, pp. 1-77, 2000. · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[19] A. Compte, “Stochastic foundations of fractional dynamics,” Physical Review E, vol. 53, no. 4, pp. 4191-4193, 1996.
[20] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel,” Yokohama Journal of Mathematics, vol. 19, pp. 7-15, 1971. · Zbl 0221.45003
[21] R. K. Saxena, A. M. Mathai, and H. J. Haubold, “Solultions of fractional reaction-diffusion equations in terms of Mittag-Leffler functions,” International Journal of Scientific Research, vol. 15, pp. 1-17, 2006. · Zbl 1153.34304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.