×

A general spectral method for the numerical simulation of one-dimensional interacting fermions. (English) Zbl 1268.82021

Summary: This work introduces a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient MATLAB program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows for an accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
82-08 Computational methods (statistical mechanics) (MSC2010)
35Q41 Time-dependent Schrödinger equations and Dirac equations
82-04 Software, source code, etc. for problems pertaining to statistical mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs

References:

[1] Auslaender, O. M.; Steinberg, H.; Yacoby, A.; Tserkovnyak, Y.; Halperin, B. I.; Baldwin, K. W.; Pfeiffer, L. N.; West, K. W., Spin-charge separation and localization in one dimension, Science, 308, 88-92 (2005)
[2] Jompol, Y.; Ford, C. J.B.; Griffiths, J. P.; Farrer, I.; Jones, G. A.C.; Anderson, D.; Ritchie, D. A.; Silk, T. W.; Schofield, A. J., Probing spin-charge separation in a Tomonaga-Luttinger liquid, Science, 325, 597-601 (2009)
[3] Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Physical Properties of Carbon Nanotubes (1998), World Scientific Publishing
[4] Kohler, H., Exact diagonalization of 1d interacting spinless fermions, Journal of Mathematical Physics, 52, 032107 (2011) · Zbl 1315.82018
[5] Edvardsson, S.; Åberg, D.; Uddholm, P., A program for accurate solutions of two-electron atoms, Computer Physics Communications, 165, 260-270 (2005) · Zbl 1196.81019
[6] Amore, P.; Fernández, F. M., One-dimensional oscillator in a box, European Journal of Physics, 31, 69 (2010) · Zbl 1188.81056
[7] Yin, X.; Hao, Y.; Chen, S.; Zhang, Y., Ground-state properties of a few-boson system in a one-dimensional hard-wall split potential, Phys. Rev. A, 78, 013604 (2008)
[8] Beylkin, G.; Mohlenkamp, M. J., Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26, 2133-2159 (2005) · Zbl 1085.65045
[9] Beylkin, G.; Mohlemkamp, M. J.; Pérez, F., Approximating a wavefunction as an unconstrained sum of Slater determinants, J. Math. Phys., 49, 032107, 28 (2008) · Zbl 1153.81322
[10] Hackbusch, W., The efficient computation of certain determinants arising in the treatment of Schrödingerʼs equations, Computing, 67, 35-56 (2001) · Zbl 0997.65075
[11] Yserentant, H., Sparse grid spaces for the numerical solution of the electronic Schrödinger equation, Numer. Math., 101, 381-389 (2005) · Zbl 1084.65125
[12] Griebel, M.; Hamaekers, J., Sparse grids for the Schrödinger equation, M2AN Math. Model. Numer. Anal., 41, 215-247 (2007) · Zbl 1145.65096
[13] Schwabl, F., Advanced Quantum Mechanics (2008), Springer-Verlag
[14] Capri, A. Z., Nonrelativistic Quantum Mechanics (2002), World Scientific Publishing Co. Inc.: World Scientific Publishing Co. Inc. River Edge, NJ · Zbl 1007.81002
[15] Canuto, C. G.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods (2007), Springer: Springer Heidelberg · Zbl 1121.76001
[16] Berrut, J.-P.; Trefethen, L. N., Barycentric Lagrange interpolation, SIAM Review, 46, 501-517 (2004) · Zbl 1061.65006
[17] Xie, T. F.; Zhou, S. P., On approximation by trigonometric Lagrange interpolating polynomials, Bull. Austral. Math. Soc., 40, 425-428 (1989) · Zbl 0687.42003
[18] Löwdin, P.-O., Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev., 97, 1474-1489 (1955) · Zbl 0065.44907
[19] Pauncz, R., The Symmetric Group in Quantum Chemistry (1995), CRC Press · Zbl 0855.20015
[20] Hora, A.; Obata, N., Quantum Probability and Spectral Analysis of Graphs (2007), Springer: Springer Berlin · Zbl 1141.81005
[21] Laurie, D. P., Computation of Gauss-type quadrature formulas, Journal of Computational and Applied Mathematics, 127, 201-217 (2001) · Zbl 0980.65021
[22] Flügge, S., Practical, Quantum Mechanics (1999), Springer-Verlag: Springer-Verlag Berlin
[23] von Stecher, J.; Greene, C. H.; Blume, D., BEC-BCS crossover of a trapped two-component Fermi gas with unequal masses, Phys. Rev. A, 76, 053613 (2007)
[24] Stevenson, P. M., Gaussian effective potential: Quantum mechanics, Phys. Rev. D, 30, 1712-1726 (1984)
[25] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2001), Dover Publications Inc.: Dover Publications Inc. Mineola, NY · Zbl 0987.65122
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.