×

A finite strain kinematic hardening constitutive model based on Hencky strain: general framework, solution algorithm and application to shape memory alloys. (English) Zbl 1426.74065

Summary: The logarithmic or Hencky strain measure is a favored measure of strain due to its remarkable properties in large deformation problems. Compared with other strain measures, e.g., the commonly used Green-Lagrange measure, logarithmic strain is a more physical measure of strain. In this paper, we present a Hencky-based phenomenological finite strain kinematic hardening, non-associated constitutive model, developed within the framework of irreversible thermodynamics with internal variables. The derivation is based on the multiplicative decomposition of the deformation gradient into elastic and inelastic parts, and on the use of the isotropic property of the Helmholtz strain energy function. We also use the fact that the corotational rate of the Eulerian Hencky strain associated with the so-called logarithmic spin is equal to the strain rate tensor (symmetric part of the velocity gradient tensor). Satisfying the second law of thermodynamics in the Clausius-Duhem inequality form, we derive a thermodynamically-consistent constitutive model in a Lagrangian form. In comparison with the available finite strain models in which the unsymmetric Mandel stress appears in the equations, the proposed constitutive model includes only symmetric variables. Introducing a logarithmic mapping, we also present an appropriate form of the proposed constitutive equations in the time-discrete frame. We then apply the developed constitutive model to shape memory alloys and propose a well-defined, non-singular definition for model variables. In addition, we present a nucleation-completion condition in constructing the solution algorithm. We finally solve several boundary value problems to demonstrate the proposed model features as well as the numerical counterpart capabilities.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74N05 Crystals in solids
74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Anand, L.: On h. Henckys approximate strain-energy function for moderate deformations, ASME journal of applied mechanics 46, 78-82 (1979) · Zbl 0405.73032 · doi:10.1115/1.3424532
[2] Anand, L.: Moderate deformations in extension – torsion of incompressible isotropic elastic materials, Mechanics and physics of solids 34, 293-304 (1986)
[3] Arghavani, J., 2010. Thermo-mechanical behavior of shape memory alloys under multiaxial loadings: constitutive modeling and numerical inplementation at small and finite strains. PhD Thesis. Sharif University of Technology, Iran.
[4] Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.: An improved, fully symmetric, finite strain phenomenological constitutive model for shape memory alloys, Finite elements in analysis and design (2010) · Zbl 1234.74016
[5] Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.: On the robustness and efficiency of integration algorithms for a 3D finite strain phenomenological SMA constitutive model, International journal for numerical methods in engineering (2010) · Zbl 1217.74113
[6] Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.; Sohrabpour, S.: A 3D phenomenological constitutive model for shape memory alloys under multiaxial loadings, International journal of plasticity 26, 976-991 (2010) · Zbl 1452.74088
[7] Arghavani, J.; Auricchio, F.; Naghdabadi, R.; Reali, A.; Sohrabpour, S.: A 3D finite strain phenomenological constitutive model for shape memory alloys considering martensite reorientation, Continuum mechanics and thermodynamics 22, 345-362 (2010) · Zbl 1234.74016
[8] Auricchio, F.: A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model, International journal of plasticity 17, 971-990 (2001) · Zbl 1107.74338 · doi:10.1016/S0749-6419(00)00050-4
[9] Auricchio, F.; Marfia, S.; Sacco, E.: Modelling of SMA materials: training and two way memory effects, Computers and structures 81, 2301-2317 (2003)
[10] Auricchio, F.; Petrini, L.: Improvements and algorithmical considerations on a recent three-dimensional model describing stress-induced solid phase transformations, International journal for numerical methods in engineering 55, 1255-1284 (2002) · Zbl 1062.74580 · doi:10.1002/nme.619
[11] Auricchio, F.; Petrini, L.: A three-dimensional model describing stress-temperature induced solid phase transformations: thermomechanical coupling and hybrid composite applications, International journal for numerical methods in engineering 61, 716-737 (2004) · Zbl 1075.74598 · doi:10.1002/nme.1087
[12] Auricchio, F.; Petrini, L.: A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems, International journal for numerical methods in engineering 61, 807-836 (2004) · Zbl 1075.74599 · doi:10.1002/nme.1086
[13] Auricchio, F.; Reali, A.; Stefanelli, U.: A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity, International journal of plasticity 23, 207-226 (2007) · Zbl 1105.74031 · doi:10.1016/j.ijplas.2006.02.012
[14] Auricchio, F.; Taylor, R. L.: Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior, Computer methods in applied mechanics and engineering 143, 175-194 (1997) · Zbl 0891.73027 · doi:10.1016/S0045-7825(96)01147-4
[15] Bekker, A.; Brinson, L. C.: Temperature-induced phase transformation in a shape memory alloy: phase diagram based kinetics approach, Journal of the mechanics and physics of solids 45, 949-988 (1997) · Zbl 0974.74547 · doi:10.1016/S0022-5096(96)00111-1
[16] Bouvet, C.; Calloch, S.; Lexcellent, C.: Mechanical behavior of a cu – al – be shape memory alloy under multiaxial proportional and nonproportional loadings, Journal of engineering materials and technology 124, 112-124 (2002)
[17] Bouvet, C.; Calloch, S.; Lexcellent, C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings, European journal of mechanics A – solids 23, 37-61 (2004) · Zbl 1057.74027 · doi:10.1016/j.euromechsol.2003.09.005
[18] Bruhns, O. T.; Xiao, H.; Meyers, A.: Self-consistent Eulerian rate type elasto-plasticity models based upon the logarithmic stress rate, International journal of plasticity 15, 479-520 (1999) · Zbl 1036.74010 · doi:10.1016/S0749-6419(99)00003-0
[19] Christ, D.; Reese, S.: A finite element model for shape memory alloys considering thermomechanical couplings at large strains, International journal of solids and structures 46, 3694-3709 (2009) · Zbl 1183.74265 · doi:10.1016/j.ijsolstr.2009.06.017
[20] Criscione, J. C.; Humphrey, J. D.; Douglas, A. S.; Hunter, W. C.: An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity, Journal of the mechanics and physics of solids 48, 2445-2465 (2000) · Zbl 0983.74012 · doi:10.1016/S0022-5096(00)00023-5
[21] Darijani, H.; Naghdabadi, R.: Constitutive modeling of solids at finite deformation using a second-order stress-strain relation, International journal of engineering science 48, 223-236 (2010) · Zbl 1397.74022
[22] Duerig, T. W.; Melton, K. N.; Stoekel, D.; Wayman, C. M.: Engineering aspects of shape memory alloys, (1990)
[23] Eterovic, A. L.; Bathe, K. J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures, International journal for numerical methods in engineering 30, 1099-1114 (1990) · Zbl 0714.73035 · doi:10.1002/nme.1620300602
[24] Evangelista, V.; Marfia, S.; Sacco, E.: A 3D SMA constitutive model in the framework of finite strain, International journal for numerical methods in engineering (2009) · Zbl 1183.74173
[25] Funakubo, H.: Shape memory alloys, (1987)
[26] Ghavam, K.; Naghdabadi, R.: Spin tensors associated with corotational rates and corotational integrals in continua, International journal of solids and structures 44, 5222-5235 (2007) · Zbl 1142.74009 · doi:10.1016/j.ijsolstr.2006.12.030
[27] Grabe, C.; Bruhns, O.: Path dependence and multiaxial behavior of a polycrystalline niti alloy within the pseudoelastic and pseudoplastic temperature regimes, International journal of plasticity 25, 513-545 (2009) · Zbl 1277.74013
[28] Gurtin, M. E.; Anand, L.: The decomposition f=fefp, material symmetry, and plastic irrotationality for solids that are isotropic-viscoplastic or amorphous, International journal of plasticity 21, 1686-1719 (2005) · Zbl 1180.74009 · doi:10.1016/j.ijplas.2004.11.007
[29] Haupt, P.: Continuum mechanics and theory of materials, (2002) · Zbl 0993.74001
[30] Helm, D., 2001. Formgedächtnislegierungen – experimentelle untersuchung, phänomenologische Modellierung und numerische Simulation der thermomechanischen Materialeigenschaften. Ph.D. Thesis. Universitat Gesamthochschule Kassel.
[31] Helm, D.: Thermodynamics of martensitic phase transformations in shape memory alloys. I. constitutive theories for small and large deformations, Journal of mechanics of materials and structures 2, 87-112 (2007)
[32] Helm, D., Haupt, P., 2002. Thermomechanical representation of the multiaxial behavior of shape memory alloys. In: Lynch, C.S. (Ed.), Proceedings of SPIE Smart Structures and Materials 2002. Active Materials: Behavior and Mechanics, vol. 4699, pp. 343 – 354.
[33] Helm, D.; Haupt, P.: Shape memory behaviour: modelling within continuum thermomechanics, International journal of solids and structures 40, 827-849 (2003) · Zbl 1025.74022 · doi:10.1016/S0020-7683(02)00621-2
[34] Henann, D. L.; Anand, L.: A large deformation theory for rate-dependent elastic – plastic materials with combined isotropic and kinematic hardening, International journal of plasticity 25, 1833-1878 (2009)
[35] Hencky, H.: Über die form des elastizitätsgesetzes bei ideal elastischen stoffen, Zeitschrift fur technische physik 9, 214-247 (1928) · JFM 54.0851.03
[36] Holzapfel, G. A.: Nonlinear solid mechanics: A continuum approach for engineering, (2000) · Zbl 0980.74001
[37] Lagoudas, D. C.; Entchev, P. B.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: Constitutive model for fully dense smas, Mechanics of materials 36, 865-892 (2004)
[38] Leclercq, S.; Lexcellent, C.: A general macroscopic description of the thermomechanical behavior of shape memory alloys, Journal of the mechanics and physics of solids 44, 953-957 (1996)
[39] Lim, T. J.; Mcdowell, D. L.: Mechanical behavior of an ni – ti shape memory alloy under axial-torsional proportional and nonproportional loading, Journal of engineering materials and technology 121, 9-18 (1999)
[40] Lin, R. C.; Schomburg, U.: A novel internal dissipation inequality by isotropy and its implication for inelastic constitutive characterization, Mechanics research communications 30, 125-133 (2003) · Zbl 1047.74004 · doi:10.1016/S0093-6413(02)00349-X
[41] Lubarda, V. A.: Elastoplasticity theory, (2002) · Zbl 1014.74001
[42] Miehe, C.: Exponential map algorithm for stress updates in anisotropic multiplicative elastoplasticity for single crystals, International journal for numerical methods in engineering 39, 3367-3390 (1996) · Zbl 0899.73136 · doi:10.1002/(SICI)1097-0207(19961015)39:19<3367::AID-NME4>3.0.CO;2-7
[43] Miehe, C.; Apel, N.; Lambrecht, M.: Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials, Computer methods in applied mechanics and engineering 191, 5383-5425 (2002) · Zbl 1083.74518 · doi:10.1016/S0045-7825(02)00438-3
[44] Moumni, Z.; Zaki, W.; Nguyen, Q. S.: Theoretical and numerical modeling of solid-solid phase change: application to the description of the thermomechanical behavior of shape memory alloys, International journal of plasticity 24, 614-645 (2008) · Zbl 1145.74028 · doi:10.1016/j.ijplas.2007.07.007
[45] Müller, C.; Bruhns, O.: An Eulerian model for pseudoelastic shape memory alloys, Materialwissenschaft und werkstofftechnik 35, 260-271 (2004)
[46] Müller, C.; Bruhns, O.: A thermodynamic finite-strain model for pseudoelastic shape memory alloys, International journal of plasticity 22, 1658-1682 (2006) · Zbl 1099.74050 · doi:10.1016/j.ijplas.2006.02.010
[47] Naghdabadi, R.; Yeganeh, M.; Saidi, A.: Application of corotational rates of the logarithmic strain in constitutive modeling of hardening materials at finite deformations, International journal of plasticity 21, 1546-1567 (2005) · Zbl 1148.74322 · doi:10.1016/j.ijplas.2004.07.005
[48] Ogden, R. W.: Non-linear elastic deformations, (1984) · Zbl 0541.73044
[49] Otsuka, K.; Wayman, C. M.: Shape memory materials, (1998)
[50] Ottosen, N. S.; Ristinmaa, M.: The mechanics of constitutive modeling, (2005) · Zbl 0924.73075
[51] Pai, P. F.; Palazotto, A. N.; Jr., J. M. Greer; Greer, J. M.: Polar decomposition and appropriate strains and stresses for nonlinear structural analyses, Computers and structures 66, 823-840 (1998) · Zbl 0934.74047 · doi:10.1016/S0045-7949(98)00004-2
[52] Pan, H.; Thamburaja, P.; Chau, F.: An isotropic-plasticity-based constitutive model for martensitic reorientation and shape-memory effect in shape-memory alloys, International journal of solids and structures 44, 7688-7712 (2007) · Zbl 1166.74396 · doi:10.1016/j.ijsolstr.2007.05.006
[53] Pan, H.; Thamburaja, P.; Chau, F.: Multi-axial behavior of shape-memory alloys undergoing martensitic reorientation and detwinning, International journal of plasticity 23, 711-732 (2007) · Zbl 1190.74026 · doi:10.1016/j.ijplas.2006.08.002
[54] Panico, M.; Brinson, L.: A three-dimensional phenomenological model for martensite reorientation in shape memory alloys, Journal of the mechanics and physics of solids 55, 2491-2511 (2007) · Zbl 1171.74037 · doi:10.1016/j.jmps.2007.03.010
[55] Patoor, E.; Eberhardt, A.; Berveiller, M.: Micromechanical modelling of superelasticity in shape memory alloys, Journal de physique IV 6, 277-292 (1996) · Zbl 0806.73062
[56] Peric, D.; Owen, D. R. J.; Honnor, M. E.: A model for finite strain elasto-plasticity based on logarithmic strains: computational issues, Computer methods in applied mechanics and engineering 94, 35-61 (1992) · Zbl 0747.73020 · doi:10.1016/0045-7825(92)90156-E
[57] Pethö, A.: Constitutive modelling of shape memory alloys at finite strain, Zeitschrift fur angewandte Mathematik und mechanik 81, 355-356 (2001) · Zbl 1001.74090
[58] Popov, P.; Lagoudas, D. C.: A 3D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite, International journal of plasticity 23, 1679-1720 (2007) · Zbl 1127.74008 · doi:10.1016/j.ijplas.2007.03.011
[59] Qidwai, M. A.; Lagoudas, D. C.: On thermomechanics and transformation surfaces of polycrystalline niti shape memory alloy material, International journal of plasticity 16, 1309-1343 (2000) · Zbl 1032.74043 · doi:10.1016/S0749-6419(00)00012-7
[60] Raniecki, B.; Lexcellent, C.: Rl-models of pseudoelasticity and their specification for some shape memory solids, European journal of mechanics A – solids 13, 21-50 (1994) · Zbl 0795.73010
[61] Raniecki, B.; Lexcellent, C.: Thermodynamics of isotropic pseudoelasticity in shape memory alloys, European journal of mechanics A – solids 17, 185-205 (1998) · Zbl 0919.73006 · doi:10.1016/S0997-7538(98)80082-X
[62] Raniecki, B.; Lexcellent, C.; Tanaka, K.: Thermodynamic models of pseudoelastic behaviour of shape memory alloys, Archive of mechanics 44, 261-284 (1992) · Zbl 0825.73044
[63] Reese, S.; Christ, D.: Finite deformation pseudo-elasticity of shape memory alloys – constitutive modelling and finite element implementation, International journal of plasticity 24, 455-482 (2008) · Zbl 1145.74005 · doi:10.1016/j.ijplas.2007.05.005
[64] Reinhardt, W.; Dubey, R.: Application of objective rates in mechanical modeling of solids, ASME journal of applied mechanics 63, 692-698 (1996) · Zbl 0893.73004 · doi:10.1115/1.2823351
[65] Reinhardt, W. D.; Dubey, R. N.: Eulerian strain-rate as a rate of logarithmic strain, Mechanics research communications 22, 165-170 (1995) · Zbl 0842.73010 · doi:10.1016/0093-6413(95)00008-9
[66] Shaw, J. A.: Simulations of localized thermo-mechanical behavior in a niti shape memory alloy, International journal of plasticity 16, 541-562 (2000) · Zbl 1043.74525 · doi:10.1016/S0749-6419(99)00075-3
[67] Sittner, P.; Hara, Y.; Tokuda, M.: Experimental study on the thermoelastic martensitic transformation in shape memory alloy polycrystal induced by combined external forces, Metallurgical and materials transactions A 26, 2923-2935 (1995)
[68] Souza, A. C.; Mamiya, E. N.; Zouain, N.: Three-dimensional model for solids undergoing stress-induced phase transformations, European journal of mechanics A – solids 17, 789-806 (1998) · Zbl 0921.73024 · doi:10.1016/S0997-7538(98)80005-3
[69] Stein, E.; Sagar, G.: Theory and finite element computation of cyclic martensitic phase transformation at finite strain, International journal for numerical methods in engineering 74, 1-31 (2008) · Zbl 1159.74389 · doi:10.1002/nme.2148
[70] Thamburaja, P.: Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys, Journal of the mechanics and physics of solids 53, 825-856 (2005) · Zbl 1120.74310 · doi:10.1016/j.jmps.2004.11.004
[71] Thamburaja, P.: A finite-deformation-based phenomenological theory for shape-memory alloys, International journal of plasticity 26, 1195-1219 (2010) · Zbl 1426.74243
[72] Thamburaja, P.; Anand, L.: Polycrystalline shape-memory materials: effect of crystallographic texture, Journal of the mechanics and physics of solids 49, 709-737 (2001) · Zbl 1011.74049 · doi:10.1016/S0022-5096(00)00061-2
[73] Thiebaud, F.; Lexcellent, C.; Collet, M.; Foltete, E.: Implementation of a model taking into account the asymmetry between tension and compression, the temperature effects in a finite element code for shape memory alloys structures calculations, Computational materials science 41, 208-221 (2007)
[74] Truesdell, C.; Noll, W.: The non-linear field theories of mechanics, (1965) · Zbl 0779.73004
[75] Vladimirov, I. N.; Pietryga, M. P.; Reese, S.: On the modelling of non-linear kinematic hardening at finite strains with application to springback-comparison of time integration algorithms, International journal for numerical methods in engineering 75, 1-28 (2008) · Zbl 1195.74019 · doi:10.1002/nme.2234
[76] Vladimirov, I. N.; Pietryga, M. P.; Reese, S.: Anisotropic finite elastoplasticity with nonlinear kinematic and isotropic hardening and application to sheet metal forming, International journal of plasticity 26, 659-687 (2010) · Zbl 1426.74073
[77] Xiao, H.; Bruhns, O. T.; Meyers, A.: Logarithmic strain, logarithmic spin and logarithmic rate, Acta mechanica 124, 89-105 (1997) · Zbl 0909.73006 · doi:10.1007/BF01213020
[78] Xiao, H.; Bruhns, O. T.; Meyers, A.: A consistent finite elastoplasticity theory combining additive and multiplicative decomposition of the stretching and the deformation gradient, International journal of plasticity 16, 143-177 (2000) · Zbl 1005.74015 · doi:10.1016/S0749-6419(99)00045-5
[79] Xiao, H.; Bruhns, O. T.; Meyers, A.: Large strain responses of elastic-perfect plasticity and kinematic hardening plasticity with the logarithmic rate: Swift effect in torsion, International journal of plasticity 17, 211-235 (2001) · Zbl 1007.74026 · doi:10.1016/S0749-6419(00)00054-1
[80] Xiao, H.; Bruhns, O. T.; Meyers, A.: Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric hencky strain and Cauchy stress, Acta mechanica 168, 21-33 (2004) · Zbl 1063.74014 · doi:10.1007/s00707-004-0074-5
[81] Xiao, H.; Bruhns, O. T.; Meyers, A.: Elastoplasticity beyond small deformations, Acta mechanica 182, 31-111 (2006) · Zbl 1116.74005 · doi:10.1007/s00707-005-0282-7
[82] Xiao, H.; Chen, L. S.: Hencky’s elasticity model and linear stress-strain relations in isotropic finite hyperelasticity, Acta mechanica 157, 51-60 (2002) · Zbl 1068.74008 · doi:10.1007/BF01182154
[83] Yeganeh, M.; Naghdabadi, R.: Axial effects investigation in fixed-end circular bars under torsion with a finite deformation model based on logarithmic strain, International journal of mechanical sciences 48, 75-84 (2006) · Zbl 1192.74221 · doi:10.1016/j.ijmecsci.2005.09.008
[84] Ziolkowski, A.: Three-dimensional phenomenological thermodynamic model of pseudoelasticity of shape memory alloys at finite strains, Continuum mechanics and thermodynamics 19, 379-398 (2007) · Zbl 1160.74322 · doi:10.1007/s00161-007-0060-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.