×

A ‘stack’ model of rate-independent polycrystals. (English) Zbl 1426.74066

Summary: A novel ‘stack’ model of a rate-independent polycrystal, which extends the ‘ALAMEL’ model of P. Van Houtte et al. [ibid. 21, No. 3, 589–624 (2005; Zbl 1154.74320)] is proposed. In the ‘stack’ model, stacks of \(N\) neighboring ‘ALAMEL’ domains collectively accommodate the imposed macroscopic deformation while deforming such that velocity and traction continuity with their neighbors is maintained. The flow law and consistency conditions are derived and an efficient solution methodology based on the linear programming technique is given. The present model is applied to study plastic deformation of an idealized two-dimensional polycrystal under macroscopically imposed plane-strain tension and simple shear constraints. Qualitative and quantitative variations in the predicted macroscopic and microscopic response with \(N\) are presented. The constraint on individual ‘ALAMEL’ domains diminishes with stack size \(N\) but saturates for large \(N\). Computational effort associated with the present model is analyzed and found to be well within one order of magnitude greater than that required to solve the classical Taylor model. Furthermore, implementation of the consistency conditions is found to reduce computation time by at least 50%.

MSC:

74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)
74E15 Crystalline structure
74S30 Other numerical methods in solid mechanics (MSC2010)
90C90 Applications of mathematical programming

Citations:

Zbl 1154.74320

Software:

LSODE
Full Text: DOI

References:

[1] Aernoudt, E.; Van Houtte, P.; Leffers, T.: Deformation and textures of metals at large strains, Materials science and technology: A comprehensive treatment 6 (1993)
[2] Amirkhizi, A. V.; Nemat-Nasser, S.: A framework for numerical integration of crystal elasto-plastic constitutive equations compatible with explicit finite element codes, Int. J. Plasticity 23, No. 10 – 11, 1918-1937 (2007) · Zbl 1126.74009 · doi:10.1016/j.ijplas.2007.05.003
[3] Anand, L.; Kothari, M.: A computational procedure for rate-independent crystal plasticity, J. mech. Phys. solids 44, No. 4, 525-558 (1996) · Zbl 1054.74549 · doi:10.1016/0022-5096(96)00001-4
[4] Asaro, R.; Lubarda, V.: Mechanics of solids and materials, (2006) · Zbl 1220.74004
[5] Asaro, R. J.: Geometrical effects in the inhomogeneous deformation of ductile single crystals, Acta metall. 27, No. 3, 445-453 (1979)
[6] Asaro, R. J.: Micromechanics of crystals and polycrystals, Advances in applied mechanics 23, 1-115 (1983)
[7] Ashby, M. F.: The deformation of plastically non-homogeneous materials, Philos. mag. 21, No. 170, 399 (1970)
[8] Barbe, F.; Decker, L.; Jeulin, D.; Cailletaud, G.: Intergranular and intragranular behavior of polycrystalline aggregates. Part 1: F.E. Model, Int. J. Plasticity 17, No. 4, 513-536 (2001) · Zbl 1067.74011 · doi:10.1016/S0749-6419(00)00061-9
[9] Barrett, C. S.; Levenson, L. H.: Structure of aluminum after compression, Trans. AIME 137, 112-127 (1940)
[10] Barton, N. R.; Knap, J.; Arsenlis, A.; Becker, R.; Hornung, R. D.; Jefferson, D. R.: Embedded polycrystal plasticity and adaptive sampling, Int. J. Plasticity 24, No. 2, 242-266 (2008) · Zbl 1195.74288
[11] Beaudoin, A. J.; Dawson, P. R.; Mathur, K. K.; Kocks, U. F.: A hybrid finite element formulation for polycrystal plasticity with consideration of macrostructural and microstructural linking, Int. J. Plasticity 11, No. 5, 501-521 (1995) · Zbl 0835.73068 · doi:10.1016/S0749-6419(99)80003-5
[12] Beaudoin, A. J.; Mathur, K. K.; Dawson, P. R.; Johnson, G. C.: Three-dimensional deformation process simulation with explicit use of polycrystal plasticity models, Int. J. Plasticity 9, No. 7, 833-860 (1993) · Zbl 0800.73480 · doi:10.1016/0749-6419(93)90054-T
[13] Bishop, J. F. W.; Hill, R.: A theory of the plastic distortion of a polycrystalline aggregate under combined stresses, Philos. mag. 42, No. 327, 414-427 (1951) · Zbl 0042.22705
[14] Bystrzycki, J.; Kurzydlowski, K. J.; Przetakiewicz, W.: On the geometry of twin boundaries and their contribution to the strengthening and recovery of FCC polycrystals, Mater. sci. Eng. A 225, 188-195 (1997)
[15] Chin, G. Y.; Mammel, W. L.: Generalization and equivalence of the minimum work (Taylor) and maximum work (Bishop – Hill) principles of crystal plasticity, Trans. AIME 245, 1211 (1969)
[16] Christoffersen, H.; Leffers, T.: The orientation of dislocation walls in rolled copper relative to the crystallographic coordinate system, Scripta mater. 37, No. 12, 2041-2046 (1997)
[17] Cuitiño, A. M.; Ortiz, M.: Computational modeling of single crystals, Model. simul. Mater. sci. Eng. 1, 225-263 (1992)
[18] Engler, O.; Crumbach, M.; Li, S.: Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, Acta mater. 53, No. 8, 2241-2257 (2005)
[19] Fleck, N. A.; Ashby, M. F.; Hutchinson, J. W.: The role of geometrically necessary dislocations in giving material strengthening, Scripta mater. 48, 179-183 (2003)
[20] Fuh, S.; Havner, K. S.: On uniqueness of multiple-slip solutions in constrained and unconstrained f.c.c. Crystal deformation problems, Int. J. Plasticity 2, No. 4, 329-345 (1986) · Zbl 0623.73040 · doi:10.1016/0749-6419(86)90021-5
[21] Ganapathysubramanian, S.; Zabaras, N.: Modeling the thermoelastic – viscoplastic response of polycrystals using a continuum representation over the orientation space, Int. J. Plasticity 21, No. 1, 119-144 (2005) · Zbl 1112.74337 · doi:10.1016/j.ijplas.2004.04.005
[22] Garmestani, H.; Lin, S.; Adams, B. L.; Ahzi, S.: Statistical continuum theory for large plastic deformation of polycrystalline materials, J. mech. Phys. solids 49, No. 3, 589-607 (2001) · Zbl 1031.74016 · doi:10.1016/S0022-5096(00)00040-5
[23] Guan, Y.; Pourboghrat, F.; Barlat, F.: Finite element modeling of tube hydroforming of polycrystalline aluminum alloy extrusions, Int. J. Plasticity 22, No. 12, 2366-2393 (2006) · Zbl 1231.74072 · doi:10.1016/j.ijplas.2006.04.003
[24] Gurtin, M. E.: An introduction to continuum mechanics, (1981) · Zbl 0559.73001
[25] Haddadi, H.; Bouvier, S.; Banu, M.; Maier, C.; Teodosiu, C.: Towards an accurate description of the anisotropic behaviour of sheet metals under large plastic deformations: modelling, numerical analysis and identification, Int. J. Plasticity 22, No. 12, 2226-2271 (2006) · Zbl 1230.74051 · doi:10.1016/j.ijplas.2006.03.010
[26] Havner, K. S.: Finite plastic deformation of crystalline solids, (1992) · Zbl 0774.73001
[27] Havner, K. S.; Chidambarrao, D.: Analysis of a family of unstable lattice orientations in (110) channel die compression, Acta mech. 69, No. 1 – 4, 243-269 (1987) · Zbl 0629.73032 · doi:10.1007/BF01175724
[28] Hill, R.: Discontinuity relations in mechanics of solids, Progress in solid mechanics 2, 247-278 (1961)
[29] Hill, R.: Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. mech. Phys. solids 14, No. 2, 95-102 (1966)
[30] Hirsch, J.; Lucke, K.: Mechanism of deformation and development of rolling textures in polycrystalline FCC metals: I description of rolling texture in homogeneous cuzn alloys, Acta metall. 36, No. 11, 2863-2882 (1988)
[31] Hirsch, J.; Lucke, K.: Mechanism of deformation and development of rolling textures in polycrystalline FCC metals: II simulation and interpretation of experiments on the basis of Taylor-type theories, Acta metall. 36, No. 11, 2883-2904 (1988)
[32] Honneff, H.; Mecking, H.: A method for the determination of the active slip systems and orientation changes during single crystal deformation, Proceedings of the 5th international conference on the textures of materials 1, 265-275 (1978)
[33] Kalidindi, S. R.; Bronkhorst, C. A.; Anand, L.: Crystallographic texture evolution in bulk deformation processing of FCC metals, J. mech. Phys. solids, 537-569 (1992)
[34] Kalidindi, S. R.; Duvvuru, H. K.: Spectral methods for capturing crystallographic texture evolution during large plastic strains in metals, Acta mater. 53, No. 13, 3613-3623 (2005)
[35] Kalidindi, S. R.; Duvvuru, H. K.; Knezevic, M.: Spectral calibration of crystal plasticity models, Acta mater. 54, No. 7, 1795-1804 (2006)
[36] Kanjarla, A. K.; Van Houtte, P.; Delannay, L.: Assessment of plastic heterogeneity in grain interaction models using crystal plasticity finite element method, Int. J. Plasticity 26, 1220-1233 (2010) · Zbl 1426.74101
[37] Kim, J. H.; Lee, M. -G.; Barlat, F.; Wagoner, R. H.; Chung, K.: An elasto-plastic constitutive model with plastic strain rate potentials for anisotropic cubic metals, Int. J. Plasticity 24, No. 12, 2298-2334 (2008) · Zbl 1151.74009 · doi:10.1016/j.ijplas.2008.06.013
[38] Knezevic, M.; Kalidindi, S. R.; Fullwood, D.: Computationally efficient database and spectral interpolation for fully plastic Taylor-type crystal plasticity calculations of face-centered cubic polycrystals, Int. J. Plasticity 24, 1264-1276 (2008) · Zbl 1154.74049 · doi:10.1016/j.ijplas.2007.12.002
[39] Kocks, U. F.; Canova, G. R.: How many slip systems, and which?, Deformation of polycrystals 2, 35-44 (1981)
[40] Kocks, U. F.; Chandra, H.: Slip geometry in partially constrained deformation, Acta metall. 30, No. 3, 695-709 (1982)
[41] Kocks, U. F.; Tomé, C. N.; Wenk, H. R.: Texture and anisotropy, (1998)
[42] Le, N. T.; Havner, K. S.: Analysis of tensile loaded f.c.c. Crystals in 4 and 8-fold symmetry, Mech. mater. 4, No. 1, 33-50 (1985)
[43] Lebensohn, R.: Modeling the role of local correlations in polycrystal plasticity using viscoplastic self-consistent schemes, Model. simul. Mater. sci. Eng. 7, 739-746 (1999)
[44] Lebensohn, R.; Ühlenhut, H.; Hartig, C.; Mecking, H.: Plastic flow of \(\gamma \)-tial-based polysynthetically twinned crystals: micromechanical modeling, and experimental validation, Acta mater. 46, No. 13, 4701-4709 (1998)
[45] Lebensohn, R. A.; Turner, P. A.; Signorelli, J. W.; Canova, G. R.; Tomé, C. N.: Calculation of intergranual stresses based on a large strain visoplastic self-consistent polycrystal model, Model. simul. Mater. sci. Eng. 6, 447-465 (1998)
[46] Lebensohn, R. E.; Tomé, C. N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metall. Mater. 41, No. 9, 2611-2624 (1993)
[47] Lee, B. J.; Ahzi, S.; Parks, D. M.: Bicrystal-based modeling of plasticity in FCC metals, J. eng. Mater. technol. 124, No. 1, 27 (2002)
[48] Lee, E. H.: Elastic-plastic deformation at finite strains, J. appl. Mech. 36, 1-6 (1969) · Zbl 0179.55603 · doi:10.1115/1.3564580
[49] Leffers, T.: On the misfit between the grains in a deformed Sachs polycrystal and its relation to the inhomogeneous deformation of real polycrystals, Scripta metall. 9, 261-264 (1975)
[50] Leffers, T.: The shortcomings of the Taylor model in the description of the plastic deformation of real polycrystals, Proceedings of the 5th international conference on the textures of materials 1, 277-287 (1978)
[51] Leffers, T.; Christoffersen, H.: The importance of grain-to-grain interaction during rolling deformation of copper, Mater. sci. Eng., 676-679 (1997)
[52] Liu, Q.; Hansen, N.: Macroscopic and microscopic subdivision of a cold-rolled aluminium single crystal of cubic orientation, Proc. R. Soc. lond. A 454, 2555-2592 (1998)
[53] Logé, R. E.; Chastel, Y. B.: Coupling the thermal and mechanical fields to metallurgical evolutions within a finite element description of a forming process, Comput. meth. Appl. mech. 195, No. 48 – 49, 6843-6857 (2006) · Zbl 1120.74823 · doi:10.1016/j.cma.2004.11.034
[54] Mahesh, S.: Deformation banding and shear banding in single crystals, Acta mater. 54, No. 17, 4565-4574 (2006)
[55] Mahesh, S.: A hierarchical model for rate-dependent polycrystals, Int. J. Plasticity 25, No. 5, 752-767 (2009) · Zbl 1163.74011 · doi:10.1016/j.ijplas.2008.06.011
[56] Mahesh, S.: A binary tree based model for rate-independent polycrystals, Int. J. Plasticity 26, No. 1, 42-64 (2010) · Zbl 1370.74127
[57] Mahesh, S.; Tomé, C. N.; Mccabe, R. J.; Kaschner, G. C.; Beyerlein, I. J.; Misra, A.: Application of a sub-structure based hardening model to copper under loading path changes, Metall. mater. Trans. A 35, 3763-3774 (2004)
[58] Manonukul, A.; Dunne, F. P. E.: High- and low-cycle fatigue crack initiation using polycrystal plasticity, Proc. R. Soc. A 460, No. 2047, 1881-1903 (2004) · Zbl 1153.74371 · doi:10.1098/rspa.2003.1258
[59] Mathur, K. K.; Dawson, P. R.: On modeling the development of crystallographic texture in bulk forming processes, Int. J. Plasticity 5, No. 1, 67-94 (1989)
[60] Mika, D. P.; Dawson, P. R.: Effects of grain interaction on deformation in polycrystals, Mater. sci. Eng. A 257, No. 1, 62-76 (1998)
[61] Molinari, A.; Canova, G. R.; Ahzi, S.: A self consistent approach of the large deformation polycrystal viscoplasticity, Acta metall. 35, 2983-2994 (1987)
[62] Paul, H.; Morawiec, A.; Driver, J. H.; Bouzy, E.: On twinning and shear banding in a cu8 at.% al alloy plane strain compressed at 77K, Int. J. Plasticity 25, 1588-1608 (2009) · Zbl 1272.74090
[63] Peeters, B.; Bacroix, B.; Teodosiu, C.; Houtte, P. V.; Aernoudt, E.: Work-hardening/softening behavior of b.c.c. Polycrystals during changing strain paths: II TEM observations of dislocation sheets in an if steel during two-stage strain paths and their representation in terms of dislocation densities, Acta mater. 49, 1621-1632 (2001)
[64] Peeters, B.; Seefeldt, M.; Teodosiu, C.; Kalidindi, S. R.; Houtte, P. V.; Aernoudt, E.: Work-hardening/softening behavior of bcc polycrystals during changing strain paths: I an integrated model based on substructure and texture evolution, and its prediction of the stress – strain behavior of an IF steel during two-stage strain paths, Acta mater. 49, 1607-1619 (2001)
[65] Pierce, D.; Asaro, R. J.; Needleman, A.: Material rate dependence and localized deformation in crystalline solids, Acta metall. 31, No. 12, 1951-1976 (1983)
[66] Proust, G.; Tomé, C. N.; Kaschner, G. C.: Modeling texture, twinning and hardening evolution during deformation of hexagonal materials, Acta mater. 55, 2137-2148 (2007)
[67] Radhakrishnan, K.; Hindmarsh, A. C.: Description and use of lsode, the livermore solver for ordinary differential equations, , 1-124 (1993)
[68] Renouard, M.; Wintenberger, M.: Determination de l’amplitude des glissements dans la deformation plastique homogene d’un monocristal sous l’effet de contraintes et de diplacements imposes, CR acad. Sci 283, 385-388 (1981)
[69] Rice, J. R.: Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity, J. mech. Phys. solids 19, No. 6, 433-455 (1971) · Zbl 0235.73002 · doi:10.1016/0022-5096(71)90010-X
[70] Sachs, G.: Zur ableitung einer fliessbedingung, Z. ver. Dtsch. ing. 72, 734-736 (1928)
[71] Taylor, G. I.: Plastic strain in metals, J. inst. Meter. 62, 307 (1938) · Zbl 0022.08604
[72] Tomé, C.; Canova, G. R.; Kocks, U. F.; Christodoulou, N.; Jonas, J. J.: The relation between macroscopic and microscopic strain hardening in F.C.C. Polycrystals, Acta metall. 32, No. 10, 1637-1653 (1984)
[73] Van Houtte, P.: On the equivalence of the relaxed Taylor theory and the Bishop – Hill theory for partially constrained plastic deformation of crystals, Mater. sci. Eng. 55, 69-77 (1982)
[74] Van Houtte, P.; Aernoudt, E.: Solution of the generalized Taylor theory of plastic flow. I and II, Z. metallkd. 66, 202-209 (1975)
[75] Van Houtte, P.; Aernoudt, E.: Solution of the generalized Taylor theory of plastic flow. III applications, Z. metallkd. 66, 303-306 (1975)
[76] Van Houtte, P.; Delannay, L.; Kalidindi, S. R.: Comparison of two grain interaction models for polycrystal plasticity and deformation texture prediction, Int. J. Plasticity 18, No. 3, 359-377 (2002) · Zbl 1147.74311 · doi:10.1016/S0749-6419(00)00102-9
[77] Van Houtte, P.; Delannay, L.; Samajdar, I.: Quantitative predictions of the cold-rolling texture in low-carbon steel by means of the LAMEL model, Texture microstruct. 31, No. 3, 104-119 (1999)
[78] Van Houtte, P.; Kanjarla, A. K.; Van Bael, A.; Seefeldt, M.; Delannay, L.: Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials, Eur. J. Mech. A 25, No. 4, 634-648 (2006) · Zbl 1123.74008 · doi:10.1016/j.euromechsol.2006.05.003
[79] Van Houtte, P.; Li, S.; Engler, O.: Modelling deformation texture of aluminium alloys using grain interaction models, Aluminium 80, 702-706 (2004)
[80] Van Houtte, P.; Li, S.; Seefeldt, M.; Delannay, L.: Deformation texture prediction: from the Taylor model to the advanced lamel model, Int. J. Plasticity 21, No. 3, 589-624 (2005) · Zbl 1154.74320 · doi:10.1016/j.ijplas.2004.04.011
[81] Van Houtte, P.; Yerra, S. K.; Van Bael, A.: The facet method: a hierarchical multilevel modelling scheme for anisotropic convex plastic potentials, Int. J. Plasticity 25, No. 2, 332-360 (2009) · Zbl 1419.74262
[82] Wang, Z. Q.; Beyerlein, I. J.; Lesar, R.: Plastic anisotropy in fcc single crystals in high rate deformation, Int. J. Plasticity 25, No. 1, 26-48 (2008) · Zbl 1155.74011 · doi:10.1016/j.ijplas.2008.01.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.