×

Effects of size on the strength and deformation mechanism in Zr-based metallic glasses. (English) Zbl 1426.74007

Summary: We report results of uniaxial compression tests on \(Zr_{35}Ti_{30}Co_{6}Be_{29}\) metallic glass nano-pillars with diameters ranging from \(\sim 1.6 \, \mu m\) to \(\sim 100 \, nm\). The tested pillars have nearly vertical sidewalls, with the tapering angle lower than \(\sim 1^\circ\) (diameter \(>\) 200 nm) or \(\sim 2^\circ\) (diameter \(\sim 100 \, nm\)), and with a flat pillar top to minimize the artifacts due to imperfect geometry. We report that highly-localized-to-homogeneous deformation mode change occurs at 100 nm diameter, without any change in the yield strength. We also find that yield strength depends on size only down to 800 nm, below which it remains at its maximum value of 2.6 GPa. Quantitative Weibull analysis suggests that the increase in strength cannot be solely attributed to the lower probability of having weak flaws in small samples - most likely there is an additional influence of the sample size on the plastic deformation mechanism.

MSC:

74-05 Experimental work for problems pertaining to mechanics of deformable solids
74C99 Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI

References:

[1] Argon, A. S.: Plastic deformation in metallic glasses, Acta metall. 27, 47-58 (1979)
[2] Arzt, E.: Size effects in materials due to microstructural and dimensional constraints: a comparative review, Acta mater. 46, 5611-5626 (1998)
[3] Ashby, M. F.; Greer, A. L.: Metallic glasses as structural materials, Scr. mater. 54, 321-326 (2006)
[4] Chen, C. Q.; Pei, Y. T.; De Hosson, J. T. M.: Strength of submicrometer diameter pillars of metallic glasses investigated with in situ transmission electron microscopy, Phil. mag. Lett. 89, 633-640 (2009)
[5] Chen, C. Q.; Pei, Y. T.; De Hosson, J. T. M.: Size effects in the mechanical response of metallic glasses investigated through in-situ TEM bending and compression experiments, Acta mater. 58, 189-200 (2010)
[6] Cheng, S.; Wang, X. L.; Choo, H.; Liaw, P. K.: Global melting of zr57ti5ni8cu20al10 bulk metallic Glass under microcompression, Appl. phys. Lett. 91, 201917 (2007)
[7] Dubach, A.; Raghavan, R.; Loffler, J. F.; Michler, J.; Ramamurty, U.: Micropillar compression studies on a bulk metallic Glass in different structural states, Scr. mater. 60, 567-570 (2009)
[8] Falk, M. L.; Langer, J. S.: Dynamics of viscoplastic deformation in amorphous solids, Phys. rev. E 57, 7192-7205 (1998)
[9] Gilbert, C. J.; Ager, J. W.; Schroeder, V.; Ritchie, R. O.; Lloyd, J. P.; Graham, J. R.: Light emission during fracture of a zr – ti – ni – cu – be bulk metallic Glass, Appl. phys. Lett. 74, 3809-3811 (1999)
[10] Greer, J. R.; Oliver, W. C.; Nix, W. D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients, Acta mater. 53, 1821-1830 (2005)
[11] Guo, H.; Yan, P. F.; Wang, Y. B.; Tan, J.; Zhang, Z. F.; Sui, M. L.; Ma, E.: Tensile ductility and necking of metallic Glass, Nat. mater. 6, 735-739 (2007)
[12] Hofmann, D. C.; Suh, J. Y.; Wiest, A.; Duan, G.; Lind, M. L.; Demetriou, M. D.; Johnson, W. L.: Designing metallic Glass matrix composites with high toughness and tensile ductility, Nature 451, 1085-1089 (2008)
[13] Jang, D.; Greer, J. R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses, Nat. mater. 9, 215-219 (2010)
[14] Kiener, D.; Motz, C.; Dehm, G.: Micro-compression testing: a critical discussion of experimental constraints, Mater. sci. Eng. A – struct. 505, 79-87 (2009)
[15] Lai, Y. H.; Lee, C. J.; Cheng, Y. T.; Chou, H. S.; Chen, H. M.; Du, X. H.; Chang, C. I.; Huang, J. C.; Jian, S. R.; Jang, J. S. C.; Nieh, T. G.: Bulk and microscale compressive behavior of a zr-based metallic Glass, Scr. mater. 58, 890-893 (2008)
[16] Lee, C. J.; Huang, J. C.; Nieh, T. G.: Sample size effect and microcompression of mg65cu25gd10 metallic Glass, Appl. phys. Lett. 91, 161913 (2007)
[17] Li, Q. K.; Li, M.: Molecular dynamics simulation of intrinsic and extrinsic mechanical properties of amorphous metals, Intermetallics 14, 1005-1010 (2006)
[18] Nagendra, N.; Ramamurty, U.; Goh, T. T.; Li, Y.: Effect of crystallinity on the impact toughness of a la-based bulk metallic Glass, Acta mater. 48, 2603-2615 (2000)
[19] Pugno, N. M.; Ruoff, R. S.: Nanoscale Weibull statistics, J. appl. Phys. 99 (2006)
[20] Schuh, C. A.; Hufnagel, T. C.; Ramamurty, U.: Mechanical behavior of amorphous alloys, Acta mater. 55, 4067-4109 (2007)
[21] Schuh, C. A.; Lund, A. C.; Nieh, T. G.: New regime of homogeneous flow in the deformation map of metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling, Acta mater. 52, 5879-5891 (2004)
[22] Schuster, B. E.; Wei, Q.; Ervin, M. H.; Hruszkewycz, S. O.; Miller, M. K.; Hufnagel, T. C.; Ramesh, K. T.: Bulk and microscale compressive properties of a pd-based metallic Glass, Scr. mater. 57, 517-520 (2007)
[23] Schuster, B. E.; Wei, Q.; Hufnagel, T. C.; Ramesh, K. T.: Size-independent strength and deformation mode in compression of a pd-based metallic Glass, Acta mater. 56, 5091-5100 (2008)
[24] Shade, P. A.; Wheeler, R.; Choi, Y. S.; Uchic, M. D.; Dimiduk, D. M.; Fraser, H. L.: A combined experimental and simulation study to examine lateral constraint effects on microcompression of single-slip oriented single crystals, Acta mater. 57, 4580-4587 (2009)
[25] Shan, Z. W.; Li, J.; Cheng, Y. Q.; Minor, A. M.; Asif, S. A. S.; Warren, O. L.; Ma, E.: Plastic flow and failure resistance of metallic Glass: insight from in situ compression of nanopillars, Phys. rev. B 77, 155419 (2008)
[26] Shimizu, F.; Ogata, S.; Li, J.: Yield point of metallic Glass, Acta mater. 54, 4293-4298 (2006)
[27] Uchic, M. D.; Dimiduk, D. M.; Florando, J. N.; Nix, W. D.: Sample dimensions influence strength and crystal plasticity, Science 305, 986-989 (2004)
[28] Volkert, C. A.; Donohue, A.; Spaepen, F.: Effect of sample size on deformation in amorphous metals, J. appl. Phys. 103, 083539 (2008)
[29] Weibull, W.: A statistical distribution function of wide applicability, J. appl. Mech. – trans. ASME 18, 293-297 (1951) · Zbl 0042.37903
[30] Wu, W. F.; Li, Y.; Schuh, C. A.: Strength, plasticity and brittleness of bulk metallic glasses under compression: statistical and geometric effects, Phil. mag. 88, 71-89 (2008)
[31] Wu, X. L.; Guo, Y. Z.; Wei, Q.; Wang, W. H.: Prevalence of shear banding in compression of zr41ti14cu12.5ni10be22.5 pillars as small as 150nm in diameter, Acta mater. 57, 3562-3571 (2009)
[32] Xi, X. K.; Zhao, D. Q.; Pan, M. X.; Wang, W. H.; Wu, Y.; Lewandowski, J. J.: Fracture of brittle metallic glasses: brittleness or plasticity, Phys. rev. Lett. 94 (2005)
[33] Yao, J. H.; Wang, J. Q.; Lu, L.; Li, Y.: High tensile strength reliability in a bulk metallic Glass, Appl. phys. Lett. 92 (2008)
[34] Zberg, B.; Arata, E. R.; Uggowitzer, P. J.; Loffler, J. F.: Tensile properties of glassy mgznca wires and reliability analysis using Weibull statistics, Acta mater. 57, 3223-3231 (2009)
[35] Zberg, B.; Uggowitzer, P. J.; Loffler, J. F.: Mgznca glasses without clinically observable hydrogen evolution for biodegradable implants, Nat. mater. 8, 887-891 (2009)
[36] Zhang, H.; Schuster, B. E.; Wei, Q.; Ramesh, K. T.: The design of accurate micro-compression experiments, Scr. mater. 54, 181-186 (2006)
[37] Zhao, Y. Y.; Ma, E.; Xu, J.: Reliability of compressive fracture strength of mg – zn – ca bulk metallic glasses: flaw sensitivity and Weibull statistics, Scr. mater. 58, 496-499 (2008)
[38] Zheng, Q.; Cheng, S.; Strader, J. H.; Ma, E.; Xu, J.: Critical size and strength of the best bulk metallic Glass former in the mg – cu – gd ternary system, Scr. mater. 56, 161-164 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.