×

Effects of the strain-hardening exponent on two-parameter characterizations of surface-cracks under large-scale yielding. (English) Zbl 1426.74270

Summary: The influence of strain hardening exponent on two-parameter \(J-Q\) near tip opening stress field characterization with modified boundary layer formulation and the corresponding validity limits are explored in detail. Finite element simulations of surface cracked plates under uniaxial tension are implemented for loads exceeding net-section yield. The results from this study provide numerical methodology for limit analysis and demonstrate the strong material dependencies of fracture parameterization under large scale yielding. Sufficient strain hardening is shown to be necessary to maintain \(J-Q\) predicted fields when plastic flow progresses through the remaining ligament. Lower strain hardening amplifies constraint loss due to stress redistribution in the plastic zone and increases the ratio of tip deformation to \(J\). The onset of plastic collapse is marked by shape change and/or rapid relaxation of tip fields compared to those predicted by MBL solutions and thus defining the limits of \(J-Q\) dominance. A radially independent \(Q\)-parameter cannot be evaluated for the low strain hardening material at larger deformations within a range where both cleavage and ductile fracture mechanisms are present. The geometric deformation limit of near tip stress field characterization is shown to be directly proportional to the level of stress the material is capable of carrying within the plastic zone. Accounting for the strain hardening of a material provides a more adjusted and less conservative limit methodology compared to those generalized by the yield strength alone. Results from this study are of relevance to establishing testing standards for surface cracked tensile geometries.

MSC:

74R20 Anelastic fracture and damage
74S05 Finite element methods applied to problems in solid mechanics

Software:

ABAQUS; WARP3D
Full Text: DOI

References:

[1] Anderson, T. L.: Fracture mechanics: fundamentals and applications, (2004) · Zbl 0999.74001
[2] ASTM, 2006, Standard Test Method for Measurement of Fracture Toughness, pp. E1820-06.
[3] Bai, Y.; Wierzbicki, T.: A new model of metal plasticity and fracture with pressure and lode dependence, Int. J. Plasticity 24, 1071-1096 (2008) · Zbl 1421.74016
[4] Betegón, C.; Hancock, J. W.: Two-parameter characterization of elastic – plastic crack-tip fields, J. appl. Mech. 58, 104-110 (1991)
[5] Chao, Y. J.; Zhu, X. K.: Constraint-modified J – R curves and its application to ductile crack growth, Int. J. Fracture 106, 135-160 (2000)
[6] Chiodo, M. S. G.; Ruggieri, C.: J and CTOD estimation procedure for circumferential surface cracks in pipes under bending, Eng. fract. Mech. 77, 415-436 (2010)
[7] Cicero, S.; Ainsworth, R. A.; Gutiérrez-Solana, F.: Engineering approaches for the assessment of low constraint fracture conditions: a critical review, Eng. fract. Mech. 77, 1360-1374 (2010)
[8] Systèmes, Dassault: ABAQUS theory manual, (2007)
[9] Systèmes, Dassault: ABAQUS, ver. 6.7-4, (2007)
[10] English, S.; Arakere, N. K.; Allen, P. A.: J – T characterized stress fields of surface cracked metallic liners bonded to a structural backing – I. Uniaxial tension, Eng. fract. Mech. 77, 170-181 (2010)
[11] Evans, A. G.; Riley, P. L.: Progress in nitrogen ceramics, (1983)
[12] Faleskog, J.: Effects of local constraint along three-dimensional crack fronts – a numerical and experimental investigation, J. mech. Phys. solids 43, 447-493 (1995)
[13] Gao, X.; Zhang, T.; Hayden, M.; Roe, C.: Effects of the stress state on plasticity and ductile failure of an aluminum 5083 alloy, Int. J. Plasticity 25, 2366-2382 (2009)
[14] Gao, X.; Zhang, T.; Zhuo, J.; Graham, S. M.; Hayden, M.; Roe, C.: On stress-state dependent plasticity modeling: significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule, Int. J. Plasticity (2010)
[15] Giner, E.; Fernández-Zúñiga, D.; Fernández-Sáez, J.; Fernández-Canteli, A.: On the jx1-integral and the out-of-plane constraint in a 3D elastic cracked plate loaded in tension, Int. J. Solids struct. 47, 934-946 (2010) · Zbl 1193.74118 · doi:10.1016/j.ijsolstr.2009.12.012
[16] Healy, B., Gullerud, A., Koppenhoefer, K., Roy, A., RoyChowdhury, S., Walters, M., Bichon, B., Cochran, K., Carlyle, A., Dodds, R., 2009. WARP3D-Release 16.2.4, User Manual.
[17] Henry, B. S.; Luxmoore, A. R.: The stress triaxiality constraint and the Q-value as a ductile fracture parameter, Eng. fract. Mech. 57, 375-390 (1997)
[18] Huespe, A. E.; Needleman, A.; Oliver, J.; Sánchez, P. J.: A finite thickness band method for ductile fracture analysis, Int. J. Plasticity 25, 2349-2365 (2009)
[19] Hutchinson, J. W.: Plastic stress and strain fields at a crack tip, J. mech. Phys. solids 15, 337-347 (1968)
[20] Hutchinson, J. W.: Singular behavior at the end of a tensile crack in a hardening material, J. mech. Phys. solids 16, 13-31 (1968) · Zbl 0166.20704 · doi:10.1016/0022-5096(68)90014-8
[21] Irwin, G. R.; Paris, P. C.: H.liebowitzfracture, Fracture (1971)
[22] Iwamoto, T.; Tsuta, T.: Computational simulation on deformation behavior of CT specimens of TRIP steel under mode I loading for evaluation of fracture toughness, Int. J. Plasticity 18, 1583-1606 (2002) · Zbl 1062.74581 · doi:10.1016/S0749-6419(02)00030-X
[23] Kikuchi, M.: A study on three-dimensional crack tip fields, Int. J. Pres. ves. Pip. 63, 315-326 (1995)
[24] Kim, Y.; Chao, Y. J.; Zhu, X. K.: Effect of specimen size and crack depth on 3D crack-front constraint for SENB specimens, Int. J. Solids struct. 40, 6267-6284 (2003) · Zbl 1042.74555 · doi:10.1016/S0020-7683(03)00392-5
[25] Larsson, S. G.; Carlsson, A. J.: Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic – plastic materials, J. mech. Phys. solids 21, 263-277 (1973)
[26] Leach, A. M.; Daniewicz, S. R.; Jr., J. C. Newman: A new constraint based fracture criterion for surface cracks, Eng. fract. Mech. 74, 1233-1242 (2007)
[27] Li, H.; Chandra, N.: Analysis of crack growth and crack-tip plasticity in ductile materials using cohesive zone models, Int. J. Plasticity 19, 849-882 (2003) · Zbl 1090.74670 · doi:10.1016/S0749-6419(02)00008-6
[28] Li, H.; Fu, M. W.; Lua, J.; Yang, H.: Ductile fracture: experiments and computations, Int. J. Plasticity (2010)
[29] Maclennan, I.; Hancock, J. W.: Constraint-based failure assessment diagrams, Int. J. Pres. ves. Pip. 64, 287-298 (1995)
[30] Mcclintock, F. A.: H.liebowitzfracture, Fracture (1971)
[31] McMeeking, R.M., Parks, D.M., 1979. On criteria for J-dominance of crack-tip fields in large-scale yielding. Elastic-Plastic Fracture, ASTM STP 668, pp. 175 – 194
[32] Mirone, G.; Corallo, D.: A local viewpoint for evaluating the influence of stress triaxiality and lode angle on ductile failure and hardening, Int. J. Plasticity 26, 348-371 (2010) · Zbl 1426.74273
[33] O’dowd, N. P.: Applications of two parameter approaches in elastic – plastic fracture mechanics, Eng. fract. Mech. 52, 445-465 (1995)
[34] O’dowd, N. P.; Shih, C. F.: Family of crack-tip characterized by a triaxiality parameter – I. Structure of fields, J. mech. Phys. solids 39, 989-1015 (1991)
[35] O’dowd, N. P.; Shih, C. F.: Family of crack-tip characterized by a triaxiality parameter – II. Fracture applications, J. mech. Phys. solids 40, 936-939 (1992)
[36] O’Dowd, N.P., Shih, C.F., 1994. Two-parameter fracture mechanics: theory and applications. Fracture Mechanics, vol. 24, ASTM STP 1207, pp. 21 – 47.
[37] Panayotounakos, D. E.; Markakis, M.: Analytical solutions of mixed mode plane strain crack problems in elastic perfectly plastic materials, Int. J. Plasticity 7, 847-863 (1991) · Zbl 0755.73076 · doi:10.1016/0749-6419(91)90021-P
[38] Paul, T. K.; Khan, A. S.: A centrally cracked thin circular disk, part I: 3D elastic – plastic finite element analysis, Int. J. Plasticity 14, 1209-1239 (1998) · Zbl 1056.74560
[39] Llc, Quest Reliability: FEA-crack ver. 3.1.56, (2007)
[40] Rice, J. R.: Limitations to the small scale yielding approximation for crack tip plasticity, J. mech. Phys. solids 22, 17-26 (1974)
[41] Rice, J. R.; Rosengren, G. F.: Plane strain deformation near a crack tip in a power-law hardening material, J. mech. Phys. solids 16, 1-12 (1968) · Zbl 0166.20703 · doi:10.1016/0022-5096(68)90013-6
[42] Sharma, S. M.; Aravas, N.: Determination of higher-order terms in asymptotic elastoplastic crack tip solutions, J. mech. Phys. solids 39, 1043-1072 (1991) · Zbl 0761.73090 · doi:10.1016/0022-5096(91)90051-O
[43] Sharma, S.M., Aravas N., Zelman, M.G., 1995. Two-parameter characterization of crack tip fields in edged-cracked geometries: plasticity and creep solutions. Fracture Mechanics, ASTM STP, 1220, pp. 309 – 327.
[44] Shih, C.F., 1973. Elastic – Plastic Analysis of Combined Mode Crack Problems. PhD Thesis. Harvard University.
[45] Shih, C.F., 1974. Small-scale yielding analysis of mixed mode plane-strain crack problems. Fracture Analysis. ASTM STP 560, pp. 187 – 210.
[46] Shih, C.F., O’Dowd, N.P., Kirk, M.T., 1993. A framework for quantifying crack tip constraint. Constraint Effects in Fracture. ASTM STP 1171. pp. 2 – 20
[47] Silva, L. A. L.; Cravero, S.; Ruggieri, C.: Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens. Part II: 3-D effects on constraint, Eng. fract. Mech. 73, 2123-2138 (2006)
[48] Sun, X.; Choi, K. S.; Liu, W. N.; Khaleel, M. A.: Predicting failure modes and ductility of dual phase steels using plastic strain localization, Int. J. Plasticity 25, 1888-1909 (2009)
[49] Varias, A. G.; Shih, C. F.: Quasi-static crack advance under a range of constraints – steady-state fields based on a characteristic length, J. mech. Phys. solids 41, 835-861 (1993)
[50] Wang, Y.Y., 1993. On the two-parameter characterization of elastic – plastic crack-front fields in surface-cracked plates. Constraint Effects in Fracture. ASTM STP 1171. pp. 120 – 138.
[51] Wang, X.: Two-parameter characterization of elastic – plastic crack front fields: surface cracked plates under tensile loading, Eng. fract. Mech. 76, 958-982 (2009)
[52] Wang, Y.Y., Parks, D.M., 1995. Limits of J-T characterization of elastic – plastic crack-tip fields. Constraint Effects in Fracture Theory and Applications, vol. 2. ASTM STP 1244. pp. 43 – 67.
[53] Wei, Y.; Xu, G.: A multiscale model for the ductile fracture of crystalline materials, Int. J. Plasticity 21, 2123-2149 (2005) · Zbl 1330.74037
[54] Williams, M. L.: On the stress distribution at the base of a stationary crack, J. appl. Mech. 24, 111-114 (1957) · Zbl 0077.37902
[55] Xia, L.; Shih, C. F.: Ductile crack growth – II. Void nucleation and geometry effects on macroscopic fracture behavior, J. mech. Phys. solids 43, 1953-1981 (1995) · Zbl 0919.73257 · doi:10.1016/0022-5096(95)00063-O
[56] Xue, Z.; Pontin, M. G.; Zok, F. W.; Hutchinson, J. W.: Calibration procedures for a computational model of ductile fracture, Eng. fract. Mech. 77, 492-509 (2010)
[57] Yuan, H.; Brocks, W.: On the J-integral concept for elastic – plastic crack extension, Nucl. eng. Des. 131, 157-173 (1991) · Zbl 0762.73064
[58] Zhu, X. K.; Chao, Y. J.: Fully plastic crack-tip fields for CCP and DECP specimens under tension in non-hardening materials, Int. J. Solids struct. 37, 577-598 (2000) · Zbl 0969.74597 · doi:10.1016/S0020-7683(99)00024-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.