×

Continuation of periodic solutions in the waveguide array mode-locked laser. (English) Zbl 1235.78034

Authors’ abstract: We apply the adjoint continuation method to characterize the bifurcation structure of the multi-pulsing instability associated with the periodic solution branches in mode-locked laser cavities. Supplementing the method with a computation of the Floquet multiplies allows for explicit determination of the stability of each branch. The method reveals that, when gain is increased, the multi-pulsing transition starts with a Hopf bifurcation, followed by a period-doubling bifurcation, and a saddle - node bifurcation for limit cycles. Finally, the system exhibits chaotic dynamics and transitions to the double-pulse solutions. Although this method is applied specifically to the waveguide array made-locking model, the multi-pulsing transition is conjectured to be ubiquitous and these results agree with experimental and computational results from models.

MSC:

78A60 Lasers, masers, optical bistability, nonlinear optics
78A50 Antennas, waveguides in optics and electromagnetic theory
Full Text: DOI

References:

[1] Haus, H., Mode-locking of lasers, IEEE J. Sel. Top. Quantum Electron., 6, 1173-1185 (2000)
[2] Kutz, J. N., Mode-locking of fiber lasers via nonlinear mode-coupling, (Akhmediev, N. N.; Ankiewicz, A., Dissipative Solitons (2005), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1080.35142
[3] Proctor, J.; Kutz, J. N., Theory and simulation of passive mode-locking with waveguide arrays, Opt. Lett., 13, 2013-2015 (2005)
[4] Kutz, J. N.; Sandstede, B., Theory of passive harmonic mode-locking using waveguide arrays, Opt. Express, 16, 636-650 (2008)
[5] Proctor, J.; Kutz, J. N., Averaged models for passive mode-locking using nonlinear mode-coupling, Math. Comput. Simulation, 74, 2471-2481 (2007) · Zbl 1110.78008
[6] Williams, M. O.; Shlizerman, E.; Kutz, J. N., The multi-pulsing transition in mode-locked lasers: a low-dimensional approach using waveguide arrays, J. Opt. Soc. Amer. B, 27, 2471-2481 (2010)
[7] Namiki, S.; Ippen, E. P.; Haus, H. A.; Yu, C. X., Energy rate equations for mode-locked lasers, J. Opt. Soc. Amer. B, 14, 2099-2111 (1997)
[8] Feng, L.; Wai, P. K.A.; Kutz, J. N., A geometrical description of the onset of multi-pulsing in mode-locked laser cavities, J. Opt. Soc. Amer. B, 27, 2068-2077 (2010)
[9] Kutz, J. N., Mode-locked soliton lasers, SIAM Rev., 48, 629-678 (2006) · Zbl 1121.35130
[10] Friberg, F.; Weiner, A.; Silberberg, Y.; Sfez, B.; Smith, B., Femtosecond switching in a dualcore-fiber nonlinear coupler, Opt. Lett., 13, 904-906 (1988)
[11] Eisenberg, H.; Silberberg, Y.; Morandotti, R.; Boyd, A. R.; Aitchison, J. S., Discrete spatial optical solitons in waveguide arrays, Phys. Rev. Lett., 81, 3383-3386 (1998)
[12] Aceves, A.; Angelis, C. D.; Peschel, T.; Muschall, R.; Lederer, F.; Trillo, S.; Wabinitz, S., Discrete self-trapping soliton interactions, and beam steering in nonlinear waveguide arrays, Phys. Rev. E, 53, 1172-1189 (1996)
[13] Eisenberg, H.; Morandotti, R.; Silberberg, Y.; Arnold, J.; Pennelli, G.; Aitchison, J. S., Optical discrete solitons in waveguide arrays. 1. Soliton formation, J. Opt. Soc. Amer. B, 19, 2938-2944 (2002)
[14] Peschel, U.; Morandotti, R.; Arnold, J.; Aitchison, J. S.; Eisenberg, H.; Silberberg, Y.; Peschel, T.; Lederer, F., Optical discrete solitons in waveguide arrays. 2. Dynamics properties, J. Opt. Soc. Amer. B, 19, 2637-2644 (2002)
[15] Jensen, S., The nonlinear coherent coupler, IEEE J. Quantum Electron., QE18, 1580-1583 (1982)
[16] Trillo, S.; Wabinitz, S., Nonlinear nonreciprocity in a coherent mismatched directional couple, Appl. Phys. Lett., 49, 752-754 (1986)
[17] Christodoulides, D.; Joseph, R., Discrete self-focusing in nonlinear arrays of coupled waveguides, Opt. Lett., 13, 794-796 (1988)
[18] White, T.; McPhedran, R.; de Sterke, C. M.; Litchinitser, M.; Eggleton, B., Resonance and scattering in microstructured optical fibers, Opt. Lett., 27, 1977-1979 (2002)
[19] Pertsch, T.; Peschel, U.; Kobelke, J.; Schuster, K.; Bartlet, H.; Nolte, S.; Tünnermann, A.; Lederer, F., Nonlinearity and disorder in fiber arrays, Phys. Rev. Lett., 93, 053901 (2004)
[20] Bale, B. G.; Keiu, K.; Kutz, J. N.; Wise, F., Transition dynamics for multi-pulsing in mode-locked lasers, Opt. Express, 17 (2009)
[21] Soto-Crespo, J. M.; Grapinet, M.; Grelu, P.; Akhmediev, N., Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser, Phys. Rev. E, 70 (2004)
[22] Doedel, E. J.; Keller, H. B.; Kernévez, J. P., Numerical analysis and control of bifurcation problems: (II) bifurcation in infinite dimensions, Internat. J. Bifur. Chaos, 1, 745-772 (1991) · Zbl 0876.65060
[23] Doedel, E. J.; Keller, H. B.; Kernévez, J. P., Numerical analysis and control of bifurcation problems: (II) bifurcation in infinite dimensions, Internat. J. Bifur. Chaos, 1, 745-772 (1991) · Zbl 0876.65060
[24] Govaerts, W. J.F., Numerical Methods for Bifurcations of Dynamical Equilibria (2000), SIAM: SIAM Philadelphia · Zbl 0935.37054
[25] Keller, H. B., Numerical Methods in Bifurcation Problems (2000), Springer: Springer New York · Zbl 0963.65052
[26] Ambrose, D. M.; Wilkening, J., Computation of time-periodic solutions of the Benjamin-Ono equation, J. Nonlinear Sci., 20, 277-308 (2010) · Zbl 1203.37085
[27] Ambrose, D. M.; Wilkening, J., Global paths of time-periodic solutions of the Benjamin-Ono equation connecting pairs of traveling waves, Commun. Appl. Math. Comput. Sci., 4, 177-215 (2009) · Zbl 1184.35271
[28] Ambrose, D. M.; Wilkening, J., Computation of symmetric, time-periodic solutions of the vortex sheet with surface tension, Proc. Natl. Acad. Sci., 107, 3361-3366 (2010)
[29] Keller, H. B., Numerical Methods for Two-Point Boundary-Value Problems (1968), Blaisdell: Blaisdell New York · Zbl 0172.19503
[30] Stoer, J.; Bulirsch, R., Introduction to Numerical Analysis (2002), Springer: Springer New York · Zbl 1004.65001
[31] Bristeau, M. O.; Pironneau, O.; Glowinsky, R.; Periaux, J.; Perrier, P., On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods. I—least square formulations and conjugate gradient solution of the continuous problems, Comput. Methods Appl. Mech. Engrg., 17, 619-657 (1979) · Zbl 0423.76047
[32] Jameson, A., Aerodynamic design via control theory, J. Sci. Comput., 3, 233-260 (1988) · Zbl 0676.76055
[33] Mohammadi, B.; Pironneau, O., Applied Shape Optimization for Fluids (2001), Oxford University Press: Oxford University Press New York · Zbl 0970.76003
[34] Cooper, G. J.; Sayfy, A., Additive Runge-Kutta methods for stiff ordinary differential equations, Math. Comp., 40, 207-218 (1983) · Zbl 0525.65053
[35] Kennedy, C. A.; Carpenter, M. H., Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math., 44, 139-181 (2003) · Zbl 1013.65103
[36] Nocedal, J.; Wright, S. J., Numerical Optimization (1999), Springer: Springer New York · Zbl 0930.65067
[37] Jones, C. R.; Kutz, J. N., Stability of mode-locked pulse solutions subject to saturable gain: computing linear stability with the Floquet-Fourier-Hill method, J. Opt. Soc. Amer. B, 1184-1194 (2010)
[38] Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos (1990), Springer: Springer New York · Zbl 0701.58001
[39] Dormand, J. R.; Prince, P. J., A family of embedded Runge-Kutta formulae, J. Comput. Appl. Math., 6, 19-26 (2006) · Zbl 0448.65045
[40] J. Wilkening, A fifth order additive Runge-Kutta method with a fourth order dense output, Technical Report, Lawrence Berkeley National Laboratory, 2010.; J. Wilkening, A fifth order additive Runge-Kutta method with a fourth order dense output, Technical Report, Lawrence Berkeley National Laboratory, 2010.
[41] Ascher, U. M.; Ruuth, S. J.; Wetton, B. T.R., Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal., 32, 797-823 (1995) · Zbl 0841.65081
[42] Hairer, E.; Norsett, S. P.; Wanner, G., Solving Ordinary Differential Equations I: Nonstiff Problems (2000), Springer: Springer Berlin
[43] Shampine, L. F., Some practical Runge-Kutta formulas, Math. Comp., 46, 135-150 (1986) · Zbl 0594.65046
[44] Hou, T. Y.; Li, R., Computing nearly singular solutions using pseudo-spectral methods, J. Comput. Phys., 226, 379-397 (2007) · Zbl 1310.76127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.