×

Einstein billiards and overextensions of finite-dimensional simple Lie algebras. (English) Zbl 1226.83083

Summary: In recent papers, it has been shown that (i) the dynamics of theories involving gravity can be described, in the vicinity of a spacelike singularity, as a billiard motion in a region of hyperbolic space bounded by hyperplanes; and (ii) that the relevant billiard has remarkable symmetry properties in the case of pure gravity in \(d+1\) spacetime dimensions, or supergravity theories in 10 or 11 spacetime dimensions, for which it turns out to be the fundamental Weyl chamber of the Kac-Moody algebras \(AE_{d}, E_{10}, BE_{10}\) or \(DE_{10}\) (depending on the model). We analyse in this paper the billiards associated to other theories containing gravity, whose toroidal reduction to three dimensions involves coset models \(G/H\) (with \(G\) maximally non compact). We show that in each case, the billiard is the fundamental Weyl chamber of the (indefinite) Kac-Moody “overextension” (or “canonical lorentzian extension”) of the finite-dimensional Lie algebra that appears in the toroidal compactification to 3 spacetime dimensions. A remarkable feature of the billiard properties, however, is that they do not depend on the spacetime dimension in which the theory is analyzed and hence are rather robust, while the symmetry algebra that emerges in the toroidal dimensional reduction is dimension-dependent.

MSC:

83E50 Supergravity
17B80 Applications of Lie algebras and superalgebras to integrable systems
83E99 Unified, higher-dimensional and super field theories

References:

[3] doi:10.1103/PhysRevLett.85.920 · Zbl 0978.83055 · doi:10.1103/PhysRevLett.85.920
[4] doi:10.1023/A:1002015617065 · Zbl 0971.83074 · doi:10.1023/A:1002015617065
[5] doi:10.1103/PhysRevLett.86.4749 · doi:10.1103/PhysRevLett.86.4749
[8] doi:10.1103/PhysRev.160.1113 · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[10] doi:10.1016/S0370-2693(01)00498-1 · Zbl 0977.83075 · doi:10.1016/S0370-2693(01)00498-1
[11] doi:10.1016/0370-2693(85)90024-3 · doi:10.1016/0370-2693(85)90024-3
[14] doi:10.1016/S0370-2693(00)00838-8 · Zbl 1006.83068 · doi:10.1016/S0370-2693(00)00838-8
[24] doi:10.1016/S0370-2693(98)01122-8 · doi:10.1016/S0370-2693(98)01122-8
[26] doi:10.1016/0370-2693(86)90375-8 · doi:10.1016/0370-2693(86)90375-8
[27] doi:10.1016/0550-3213(96)00171-X · Zbl 1003.81532 · doi:10.1016/0550-3213(96)00171-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.