×

Dimensional reduction over the quantum sphere and non-Abelian \(q\)-vortices. (English) Zbl 1247.81214

Consider the quantum group \(SU_{q}(2)\) with \(0<q<1\). It is the quantum group corresponding to the Hopf \(*\)-algebra \(\mathcal{A}(SU_{q}(2))\). Associated to this Hopf algebra, one has a Hopf algebra projection \(\pi: \mathcal{A}(SU_{q}(2)) \twoheadrightarrow \mathcal{A}(U(1))\), whose space of coinvariants \(\mathcal{A}(SU_{q}(2))^{co\, \pi}\) gives the non-commutative coordinate algebra \(\mathcal{A}(S_{q}^{2})\) of the standard Podleś sphere. Thus, the algebra inclusion \(\mathcal{A}(S_{q}^{2}) \hookrightarrow \mathcal{A}(SU_{q}(2))\) can be seen as a quantum principle bundle. As the quantum sphere \(S_{q}^{2}\) is endowed with a natural complex structure, one might use the convention to treat it as a quantum projective line \(\mathbb{C}\text{P}^{1}_{q}\).
Let \(M\) be a smooth manifold and denote by \(\underline{M} = \mathbb{C}\text{P}^{1}_{q} \times M \) the quantum space given by the family of quantum projective lines \(\mathbb{C}\text{P}^{1}_{q}\times \{p\} \simeq \mathbb{C}\text{P}^{1}_{q}\) parametrized by points \(p\in M\). Then the algebra of \(\underline{M}\) is given by \(\mathcal{A}(\underline{M}) = \mathcal{A}(\mathbb{C}\text{P}^{1}_{q}) \otimes \mathcal{A}(M)\). Using connections on the quantum principal bundle over \(\mathbb{C}\text{P}^{1}_{q}\), the authors construct invariant connections on \(SU_{q}(2)\)-equivariant modules over the algebra \(\mathcal{A}(\underline{M})\) and describe their dimensional reduction over \(\mathbb{C}\text{P}^{1}_{q}\). As a main theorem a reduction of Yang-Mills gauge theory on \(\mathcal{A}(\underline{M})\) to a type of Yang-Mills-Higgs theory on the manifold \(M\) is obtained. These results can be seen as a continuation of the work [L. Álvarez-Cónsul and O. García-Prada, “Dimensional reduction, SL\((2,\mathbb{C})\)-equivariant bundles and stable holomorphic chains”, Int. J. Math. 12, No. 2, 159–201 (2001; Zbl 1110.32305)], where the case \(q=1\) is treated. There an \(SU(2)\)-equivariant dimensional reduction over the product \(\mathbb{C}\text{P}^{1} \times M \) of the complex projective lines \(\mathbb{C}\text{P}^{1}\) with a Kähler manifold \(M\) was studied.
The paper ends with the description of explicit examples and a comparison with analogous results in the literature for the case \(q=1\), showing that the \(q\)-deformation generically improves the geometrical structure of the associated moduli spaces. The authors also analyse moduli spaces of \(q\)-vortices on Riemann surfaces, which give new examples of non-Abelian vortices, and show that the \(q\)-deformations on instations on Kähler surfaces are analogous to those of some previous non-commutative deformations of the self-duality equations.

MSC:

81R50 Quantum groups and related algebraic methods applied to problems in quantum theory
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16T05 Hopf algebras and their applications
81R60 Noncommutative geometry in quantum theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
81T13 Yang-Mills and other gauge theories in quantum field theory
55R91 Equivariant fiber spaces and bundles in algebraic topology

Citations:

Zbl 1110.32305

References:

[1] Álvarez-Cónsul L., García-Prada O.: Dimensional reduction, $${{{\(\backslash\)rm SL}(2,{\(\backslash\)mathbb C})}}$$ -equivariant bundles and stable holomorphic chains. Int. J. Math. 12, 159–201 (2001) · Zbl 1110.32305 · doi:10.1142/S0129167X01000745
[2] Álvarez-Cónsul L., García-Prada O.: Dimensional reduction and quiver bundles. J. Reine Angew. Math. 556, 1–46 (2003) · Zbl 1020.53047 · doi:10.1515/crll.2003.021
[3] Álvarez-Cónsul L., García-Prada O.: Hitchin–Kobayashi correspondence, quivers and vortices. Commun. Math. Phys. 238, 1–33 (2003) · Zbl 1051.53018
[4] Aschieri P., Grammatikopoulos T., Steinacker H., Zoupanos G.: Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking. J. High Energy Phys. 0609, 026 (2006) · doi:10.1088/1126-6708/2006/09/026
[5] Aschieri P., Madore J., Manousselis P., Zoupanos G.: Dimensional reduction over fuzzy coset spaces. J. High Energy Phys. 0404, 034 (2004) · Zbl 1052.81112 · doi:10.1088/1126-6708/2004/04/034
[6] Baptista J.M.: Non-abelian vortices on compact Riemann surfaces. Commun. Math. Phys. 291, 799–812 (2009) · Zbl 1186.58013 · doi:10.1007/s00220-009-0838-9
[7] Bradlow S.B.: Special metrics and stability for holomorphic bundles with global sections. J. Diff. Geom. 33, 169–213 (1991) · Zbl 0697.32014
[8] Bradlow S.B., García-Prada O.: Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304, 225–252 (1996) · Zbl 0852.32016 · doi:10.1007/BF01446292
[9] Bradlow S.B., Daskalopoulos G., García-Prada O., Wentworth R.: Stable augmented bundles over Riemann surfaces. London Math. Soc. Lect. Notes Ser. 208, 15–67 (1995) · Zbl 0827.14010
[10] Brzeziński, T., Majid, S.: Quantum group gauge theory on quantum spaces. Commun. Math. Phys. 157, 591–638 (1993); Erratum ibid. 167, 235 (1995) · Zbl 0817.58003
[11] Brzeziński T., Majid S.: Quantum differential and the q-monopole revisited. Acta Appl. Math. 54, 185–233 (1998) · Zbl 0946.58005 · doi:10.1023/A:1006053806824
[12] Dolan B.P., Szabo R.J.: Dimensional reduction, monopoles and dynamical symmetry breaking. J. High Energy Phys. 0903, 059 (2009) · doi:10.1088/1126-6708/2009/03/059
[13] García-Prada O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5, 1–52 (1994) · Zbl 0799.32022 · doi:10.1142/S0129167X94000024
[14] Hajac P.M.: Bundles over quantum sphere and noncommutative index theorem. K-Theory 21, 141–150 (2000) · Zbl 1029.58003 · doi:10.1023/A:1007824201738
[15] Hajac P.M., Majid S.: Projective module description of the q-monopole. Commun. Math. Phys. 206, 247–264 (1999) · Zbl 0936.46052 · doi:10.1007/s002200050704
[16] Harland D., Kürkçüoglu S.: Equivariant reduction of Yang–Mills theory over the fuzzy sphere and the emergent vortices. Nucl. Phys. B 821, 380–398 (2009) · Zbl 1196.81217 · doi:10.1016/j.nuclphysb.2009.06.031
[17] Khalkhali M., Landi G., van Suijlekom W.D.: Holomorphic structures on the quantum projective line. Int. Math. Res. Not. 4, 851–884 (2010) · Zbl 1219.58002
[18] Klimyk A., Schmüdgen K.: Quantum Groups and their Representations. Springer, Berlin-Heidleberg-New York (1997) · Zbl 0891.17010
[19] Landi G., Reina C., Zampini A.: Gauged laplacians on quantum Hopf bundles. Commun. Math. Phys. 287, 179–209 (2009) · Zbl 1180.58004 · doi:10.1007/s00220-008-0672-5
[20] Lechtenfeld O., Popov A.D., Szabo R.J.: Rank two quiver gauge theory, graded connections and noncommutative vortices. J. High Energy Phys. 0609, 054 (2006) · doi:10.1088/1126-6708/2006/09/054
[21] Lechtenfeld O., Popov A.D., Szabo R.J.: Quiver gauge theory and noncommutative vortices. Prog. Theor. Phys. Suppl. 171, 258–268 (2007) · Zbl 1142.81366 · doi:10.1143/PTPS.171.258
[22] Majid S.: Noncommutative riemannian and spin geometry of the standard q-sphere. Commun. Math. Phys. 256, 255–285 (2005) · Zbl 1075.58004 · doi:10.1007/s00220-005-1295-8
[23] Masuda T., Nakagami Y., Watanabe J.: Noncommutative differential geometry on the quantum two-sphere of P. Podleś. I: An algebraic viewpoint. K-Theory 5, 151–175 (1991) · Zbl 0763.46059
[24] Masuda T., Mimachi K., Nakagami Y., Noumi M., Ueno K.: Representations of the quantum group SU q (2) and the little q-Jacobi polynomials. J. Funct. Anal. 99, 357–387 (1991) · Zbl 0737.33012 · doi:10.1016/0022-1236(91)90045-7
[25] Nakajima H.: Heisenberg algebra and Hilbert schemes of points on projective surfaces. Ann. Math. 145, 379–388 (1997) · Zbl 0915.14001 · doi:10.2307/2951818
[26] Nekrasov N.A., Schwarz A.S.: Instantons on noncommutative $${\(\backslash\)mathbb{R}\^4}$$ and (2,0) superconformal six-dimensional theory. Commun. Math. Phys. 198, 689–703 (1998) · Zbl 0923.58062 · doi:10.1007/s002200050490
[27] Neshveyev S., Tuset L.: A local index formula for the quantum sphere. Commun. Math. Phys. 254, 323–341 (2005) · Zbl 1079.58021 · doi:10.1007/s00220-004-1154-z
[28] Podleś P.: Quantum spheres. Lett. Math. Phys. 14, 193–202 (1987) · Zbl 0634.46054 · doi:10.1007/BF00416848
[29] Podleś P.: Differential calculus on quantum spheres. Lett. Math. Phys. 18, 107–119 (1989) · Zbl 0702.53073 · doi:10.1007/BF00401865
[30] Popov A.D.: Non-abelian vortices on Riemann surfaces: An integrable case. Lett. Math. Phys. 84, 139–148 (2008) · Zbl 1169.53020 · doi:10.1007/s11005-008-0243-x
[31] Popov A.D., Szabo R.J.: Quiver gauge theory of non-abelian vortices and noncommutative instantons in higher dimensions. J. Math. Phys. 47, 012306 (2006) · Zbl 1111.81143 · doi:10.1063/1.2157005
[32] Schmüdgen K., Wagner E.: Dirac operator and a twisted cyclic cocycle on the standard Podleś quantum sphere. J. Reine Angew. Math. 574, 219–235 (2004) · Zbl 1067.46070
[33] Schmüdgen K., Wagner E.: Representations of cross product algebras of Podleś quantum spheres. J. Lie Theory 17, 751–790 (2007) · Zbl 1152.46058
[34] Tian G.: Gauge theory and calibrated geometry. I. Ann. Math. 151, 193–268 (2000) · Zbl 0957.58013
[35] Wagner E.: On the noncommutative spin geometry of the standard Podleś sphere and index computations. J. Geom. Phys. 59, 998–1016 (2009) · Zbl 1182.58005 · doi:10.1016/j.geomphys.2009.04.006
[36] Woronowicz S.L.: Twisted SU q (2) group. An example of a noncommutative differential calculus. Publ. Rest. Inst. Math. Sci., Kyoto Univ. 23, 117–181 (1987) · Zbl 0676.46050 · doi:10.2977/prims/1195176848
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.