×

Surface gap soliton ground states for the nonlinear Schrödinger equation. (English) Zbl 1230.35127

Summary: We consider the nonlinear Schrödinger equation \[ (-\Delta +V(x))u = \Gamma(x) |u|^{p-1}u, \quad x\in {\mathbb R}^n \] with \(V(x) = V _{1}(x)\), \(\Gamma (x) = \Gamma _{1}(x)\) for \(x _{1} > 0\) and \(V(x) = V _{2}(x)\), \(\Gamma (x) = \Gamma _{2}(x)\) for \(x _{1} < 0\), where \(V _{1}\), \(V _{2}\), \(\Gamma _{1}\), \(\Gamma _{2}\) are periodic in each coordinate direction. This problem describes the interface of two periodic media, e.g. photonic crystals. We study the existence of ground state \(H ^{1}\) solutions (surface gap soliton ground states) for \(0 < \text{min}\, \sigma(- \Delta + V)\). Using a concentration compactness argument, we provide an abstract criterion for the existence based on ground state energies of each periodic problem (with \(V \equiv V _{1}\), \(\Gamma \equiv \Gamma _{1}\) and \(V \equiv V _{2}\), \(\Gamma \equiv \Gamma _{2}\)) as well as a more practical criterion based on ground states themselves. Examples of interfaces satisfying these criteria are provided. In 1D it is shown that, surprisingly, the criteria can be reduced to conditions on the linear Bloch waves of the operators \({-\tfrac{d^2}{dx^2} +V_1(x)}\) and \({-\tfrac{d^2}{dx^2} +V_2(x)}\).

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
78A40 Waves and radiation in optics and electromagnetic theory
35Q51 Soliton equations

References:

[1] Allaire G., Orive R.: On the band gap structure of Hill’s equation. J. Math. Anal. Appl. 306, 462–480 (2005) · Zbl 1095.34014 · doi:10.1016/j.jmaa.2004.12.035
[2] Amrein W.O., Berthier A.-M., Georgescu V.: L p -inequalities for the Laplacian and unique continuation. Ann. Inst. Fourier 31, 153–168 (1981) · Zbl 0468.35017 · doi:10.5802/aif.843
[3] Arcoya D., Cingolani S., Gámez J.: Asymmetric modes in symmetric nonlinear optical waveguides. SIAM J. Math. Anal. 30, 1391–1400 (1999) · Zbl 0933.34014 · doi:10.1137/S0036141098336388
[4] Blank E., Dohnal T.: Families of Surface Gap Solitons and their Stability via the Numerical Evans Function Method. SIAM J. Appl. Dyn. Syst. 10, 667–706 (2011) · Zbl 1219.35277 · doi:10.1137/090775324
[5] Dohnal T., Plum M., Reichel W.: Localized modes of the linear periodic Schrödinger operator with a nonlocal perturbation. SIAM J. Math. Anal. 41, 1967–1993 (2009) · Zbl 1204.34114 · doi:10.1137/080743366
[6] Dohnal T., Pelinovsky D.: Surface gap solitons at a nonlinearity interface. SIAM J. Appl. Dyn. Syst. 7, 249–264 (2008) · Zbl 1165.35443 · doi:10.1137/060676751
[7] Efremidis N.K., Hudock J., Christodoulides D.N., Fleischer J.W., Cohen O., Segev M.: Two-dimensional optical lattice solitons. Phys Rev Lett. 91, 213906 (2003) · doi:10.1103/PhysRevLett.91.213906
[8] Hempel R., Voigt J.: The spectrum of a Schrödinger operator in L p (R {\(\nu\)} ) is p-independent. Commun. Math. Phys. 104, 243–250 (1986) · Zbl 0593.35033 · doi:10.1007/BF01211592
[9] Lions P.L.: The concentration compactness principle in the calculus of variations. The locally compact case, II. Ann. Inst. H. Poincaré. Anal. Non Lin. 1, 223–283 (1984) · Zbl 0704.49004
[10] Kartashov Y.V., Vysloukh V.A., Torner L.: Surface gap solitons. Phys. Rev. Lett. 96, 073901 (2006) · doi:10.1103/PhysRevLett.96.073901
[11] Kartashov Y., Vysloukh V., Szameit A., Dreisow F., Heinrich M., Nolte S., Tünnermann A., Pertsch T., Torner L.: Surface solitons at interfaces of arrays with spatially modulated nonlinearity. Opt. Lett. 33, 1120–1122 (2008) · doi:10.1364/OL.33.001120
[12] Kirr, E., Kevrekidis, P.G., Pelinovsky D.E.: Symmetry-breaking bifurcation in the nonlinear Schrödinger equation with symmetric potentials. http://arXiv.org/abs/1012.3921v1 [math-ph], 2010 · Zbl 1235.34128
[13] Korotyaev E.: Schrödinger operator with a junction of two 1-dimensional periodic potentials. Asymptot. Anal. 45, 73–97 (2005) · Zbl 1119.34067
[14] Louis P.J.Y., Ostrovskaya E.A., Savage C.M., Kivshar Y.S.: Bose-Einstein condensates in optical lattices: Band-gap structure and solitons. Phys. Rev. A 67, 013602 (2003) · doi:10.1103/PhysRevA.67.013602
[15] Mingaleev S., Kivshar Y.: Nonlinear Photonic Crystals Toward All-Optical Technologies. Opt. Photon. News 13, 48–51 (2002) · doi:10.1364/OPN.13.7.000048
[16] Makris K., Hudock J., Christodoulides D., Stegeman G., Manela O., Segev M.: Surface lattice solitons. Opt. Lett. 31, 2774–2776 (2006) · doi:10.1364/OL.31.002774
[17] Pankov A.: Periodic nonlinear Schrödinger equation with application to photonic crystals. Milan J. Math. 73, 259–287 (2005) · Zbl 1225.35222 · doi:10.1007/s00032-005-0047-8
[18] Renardy M., Rogers R.C.: An introduction to partial differential equations. Second edition. Texts in Applied Mathematics, 13. Springer-Verlag, New York (2004) · Zbl 1072.35001
[19] Rosberg Ch.R., Neshev D.N., Krolikowski W., Mitchell A., Vicencio R.A., Molina M.I., Kivshar Y.S.: Observation of surface gap solitons in semi-infinite waveguide arrays. Phys. Rev. Lett. 97, 083901 (2006) · doi:10.1103/PhysRevLett.97.083901
[20] Schechter M., Simon B.: Unique continuation for Schrödinger operators with unbounded potentials. J. Math. Anal. Appl. 77, 482–492 (1980) · Zbl 0458.35024 · doi:10.1016/0022-247X(80)90242-5
[21] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Mathematical Series. No. 30, Princeton, N.J.: Princeton University Press, 1970 · Zbl 0207.13501
[22] Struwe M.: Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems. Second edition Results in Mathematics and Related Areas (3), 34. Springer-Verlag, Berlin (1996) · Zbl 0864.49001
[23] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues. Proc. London Math. Soc. 45, 169–192 (1982) · Zbl 0505.35010 · doi:10.1112/plms/s3-45.1.169
[24] Suntsov S., Makris K., Christodoulides D., Stegeman G., Morandotti R., Volatier M., Aimez V., Arés R., Yang E., Salamo G.: Optical spatial solitons at the interface between two dissimilar periodic media: theory and experiment. Opt. Express 16, 10480–10492 (2008) · doi:10.1364/OE.16.010480
[25] Szameit A., Kartashov Y., Dreisow F., Pertsch T., Nolte S., Tünnermann A., Torner L.: Observation of Two-Dimensional Surface Solitons in Asymmetric Waveguide Arrays. Phys. Rev. Lett. 98, 173903 (2007) · doi:10.1103/PhysRevLett.98.173903
[26] Szameit A., Kartashov Y.V., Dreisow F., Heinrich M., Vysloukh V.A., Pertsch T., Nolte S., Tünnermann A., Lederer F., Torner L.: Observation of two-dimensional lattice interface solitons. Opt. Lett. 33, 663–665 (2008) · doi:10.1364/OL.33.000663
[27] Wang X., Bezryadina A., Chen Z., Makris K.G., Christodoulides D.N., Stegeman G.I.: Observation of two-dimensional surface solitons. Phys. Rev. Lett. 98, 123903 (2007) · doi:10.1103/PhysRevLett.98.123903
[28] Willem, M.: Minimax theorems. Progress in Nonlinear Differential Equations and their Applications, 24. Boston, MA: Birkhäuser Boston, Inc., 1996
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.